Reliable deep-learning-based phase imaging with uncertainty quantification (vol 6, pg 618, 2019)

被引:0
|
作者
Xue, Yujia [1 ]
Cheng, Shiyi [1 ]
Li, Yunzhe [1 ]
Tian, Lei [1 ]
机构
[1] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA
来源
OPTICA | 2020年 / 7卷 / 04期
关键词
D O I
10.1364/OPTICA.392632
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
引用
收藏
页码:332 / 332
页数:1
相关论文
共 50 条
  • [21] Learning the Deep and the Shallow: Deep-Learning-Based Depth Phase Picking and Earthquake Depth Estimation
    Muenchmeyer, Jannes
    Saul, Joachim
    Tilmann, Frederik
    SEISMOLOGICAL RESEARCH LETTERS, 2024, 95 (03) : 1543 - 1557
  • [22] Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery
    Wu, Yichen
    Rivenson, Yair
    Zhang, Yibo
    Wei, Zhensong
    Gunaydin, Harun
    Lin, Xing
    Ozcan, Aydogan
    OPTICA, 2018, 5 (06): : 704 - 710
  • [23] Fast Diverging Wave Imaging Using Deep-Learning-Based Compounding
    Lu, Jingfeng
    Millioz, Fabien
    Garcia, Damien
    Salles, Sebastien
    Friboulet, Denis
    2019 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2019, : 2341 - 2344
  • [24] Uncertainty Quantification for Deep Learning-Based Remote Photoplethysmography
    Song, Rencheng
    Wang, Han
    Xia, Haojie
    Cheng, Juan
    Li, Chang
    Chen, Xun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [25] Deep-learning-based radiointerferometric imaging with GAN-aided training
    Geyer F.
    Schmidt K.
    Kummer J.
    Brüggen M.
    Edler H.W.
    Elsässer D.
    Griese F.
    Poggenpohl A.
    Rustige L.
    Rhode W.
    Geyer, F. (felix.geyer@tu-dortmund.de), 1600, EDP Sciences (677):
  • [26] Ambiguity in Solving Imaging Inverse Problems with Deep-Learning-Based Operators
    Evangelista, Davide
    Morotti, Elena
    Piccolomini, Elena Loli
    Nagy, James
    JOURNAL OF IMAGING, 2023, 9 (07)
  • [27] Model Regeneration Scheme Using a Deep Learning Algorithm for Reliable Uncertainty Quantification of Channel Reservoirs
    Lee, Youjun
    Kang, Byeongcheol
    Kim, Joonyi
    Choe, Jonggeun
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2022, 144 (09):
  • [28] Deep-learning-based quantification of the Pull Test for assessment of postural instability in parkinsonian syndromes
    Wuehr, M.
    Peto, D.
    Fietzek, U.
    Zwergal, A.
    EUROPEAN JOURNAL OF NEUROLOGY, 2023, 30 : 723 - 723
  • [29] Deep-learning-based accurate hepatic steatosis quantification for histological assessment of liver biopsies
    Roy, Mousumi
    Wang, Fusheng
    Vo, Hoang
    Teng, Dejun
    Teodoro, George
    Farris, Alton B.
    Castillo-Leon, Eduardo
    Vos, Miriam B.
    Kong, Jun
    LABORATORY INVESTIGATION, 2020, 100 (10) : 1367 - 1383
  • [30] Deep-Learning-Based Calibration in Contrast Source Inversion Based Microwave Subsurface Imaging
    Hanabusa, Takahiro
    Morooka, Takahide
    Kidera, Shouhei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19