Learning Supervised PageRank with Gradient-Based and Gradient-Free Optimization Methods

被引:0
|
作者
Bogolubsky, Lev [1 ,2 ]
Gusev, Gleb [1 ,6 ]
Raigorodskii, Andrei [1 ,2 ,3 ,6 ]
Tikhonov, Aleksey [1 ]
Zhukovskii, Maksim [1 ,6 ]
Dvurechensky, Pavel [4 ,5 ]
Gasnikov, Alexander [5 ,6 ]
Nesterov, Yurii [7 ,8 ]
机构
[1] Yandex, Moscow, Russia
[2] Moscow MV Lomonosov State Univ, Moscow, Russia
[3] Buryat State Univ, Ulan Ude, Russia
[4] Weierstrass Inst, Berlin, Germany
[5] Inst Informat Transmiss Problems RAS, Moscow, Russia
[6] Moscow Inst Phys & Technol, Moscow, Russia
[7] Ctr Operat Res & Econometr, Louvain La Neuve, Belgium
[8] Higher Sch Econ, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
DERIVATIVES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we consider a non-convex loss-minimization problem of learning Supervised PageRank models, which can account for features of nodes and edges. We propose gradient-based and random gradient-free methods to solve this problem. Our algorithms are based on the concept of an inexact oracle and unlike the state-of-the-art gradient-based method we manage to provide theoretically the convergence rate guarantees for both of them. Finally, we compare the performance of the proposed optimization methods with the state of the art applied to a ranking task.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] An adaptive Bayesian approach to gradient-free global optimization
    Yu, Jianneng
    Morozov, Alexandre, V
    NEW JOURNAL OF PHYSICS, 2024, 26 (02):
  • [32] Metamaterials design using gradient-free numerical optimization
    Diest, Kenneth
    Sweatlock, Luke A.
    Marthaler, Daniel E.
    JOURNAL OF APPLIED PHYSICS, 2010, 108 (08)
  • [33] AUTOMATIC AND SIMULTANEOUS ADJUSTMENT OF LEARNING RATE AND MOMENTUM FOR STOCHASTIC GRADIENT-BASED OPTIMIZATION METHODS
    Lancewicki, Tomer
    Kopru, Selcuk
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 3127 - 3131
  • [34] Gradient-free algorithms for distributed online convex optimization
    Liu, Yuhang
    Zhao, Wenxiao
    Dong, Daoyi
    ASIAN JOURNAL OF CONTROL, 2023, 25 (04) : 2451 - 2468
  • [35] Gradient-free optimization of chaotic acoustics with reservoir computing
    Huhn, Francisco
    Magri, Luca
    PHYSICAL REVIEW FLUIDS, 2022, 7 (01)
  • [36] Gradient-free strategies to robust well control optimization
    Jefferson Wellano Oliveira Pinto
    Juan Alberto Rojas Tueros
    Bernardo Horowitz
    Silvana Maria Bastos Afonso da Silva
    Ramiro Brito Willmersdorf
    Diego Felipe Barbosa de Oliveira
    Computational Geosciences, 2020, 24 : 1959 - 1978
  • [37] A gradient-based, parameter-free approach to shape optimization
    Le, Chau
    Bruns, Tyler
    Tortorelli, Daniel
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (9-12) : 985 - 996
  • [38] GRADIENT-BASED STOCHASTIC OPTIMIZATION METHODS IN BAYESIAN EXPERIMENTAL DESIGN
    Huan, Xun
    Marzouk, Youssef M.
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2014, 4 (06) : 479 - 510
  • [39] INCREMENTAL GRADIENT-FREE METHOD FOR NONSMOOTH DISTRIBUTED OPTIMIZATION
    Li, Jueyou
    Li, Guoquan
    Wu, Zhiyou
    Wu, Changzhi
    Wang, Xiangyu
    Lee, Jae-Myung
    Jung, Kwang-Hyo
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2017, 13 (04) : 1841 - 1857
  • [40] Gradient-Free Method for Heavily Constrained Nonconvex Optimization
    Shi, Wanli
    Gao, Hongchang
    Gu, Bin
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,