Chaotic attractors with discrete planar symmetries

被引:50
|
作者
Carter, NC [1 ]
Eagles, RL [1 ]
Grimes, SM [1 ]
Hahn, AC [1 ]
Reiter, CA [1 ]
机构
[1] Lafayette Coll, Dept Math, Easton, PA 18042 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0960-0779(97)00157-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Chaotic behavior is known to be compatible with symmetry and illustrations are constructed using functions equivariant with respect to the desired symmetries. Earlier investigations determined families of equivariant functions for a few of the discrete symmetry groups in the plane; those results are extended to all the discrete symmetry groups of the plane. This includes consideration of the all the frieze and two-dimensional crystallographic groups. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:2031 / 2054
页数:24
相关论文
共 50 条
  • [21] THE DIMENSION OF CHAOTIC ATTRACTORS
    FARMER, JD
    OTT, E
    YORKE, JA
    PHYSICA D-NONLINEAR PHENOMENA, 1983, 7 (1-3) : 153 - 180
  • [22] The theory of chaotic attractors
    Morris, Dennis
    MATHEMATICAL GAZETTE, 2005, 89 (514): : 168 - +
  • [23] Tumors as chaotic attractors
    Nikolov, Svetoslav
    Wolkenhauer, Olaf
    Vera, Julio
    MOLECULAR BIOSYSTEMS, 2014, 10 (02) : 172 - 179
  • [24] CHAOTIC ATTRACTORS IN CRISIS
    GREBOGI, C
    OTT, E
    YORKE, JA
    PHYSICAL REVIEW LETTERS, 1982, 48 (22) : 1507 - 1510
  • [25] ON AN EQUIVALENCE OF CHAOTIC ATTRACTORS
    KOCAREV, L
    KAPITANIAK, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (09): : L249 - L254
  • [26] ON INDECOMPOSABILITY IN CHAOTIC ATTRACTORS
    Boronski, Jan P.
    Oprocha, Piotr
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (08) : 3659 - 3670
  • [27] Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale
    Maslennikov, Oleg V.
    Nekorkin, Vladimir I.
    CHAOS, 2016, 26 (07)
  • [28] Destruction of chaotic attractors in coupled chaotic systems
    Lim, W
    Kim, SY
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2001, 38 (05) : 536 - 539
  • [29] LINEAR AND NONLINEAR RESPONSE OF DISCRETE DYNAMICAL-SYSTEMS .2. CHAOTIC ATTRACTORS
    GEISEL, T
    HELDSTAB, J
    THOMAS, H
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1984, 55 (02): : 165 - 178
  • [30] New chaotic attractors and new chaotic circuits
    Rahma, F. (fadhilrahma.creative@gmail.com), 1600, Advanced Institute of Convergence Information Technology (04):