High-rate characteristics of novel anode Li4Ti5O12/polyacene materials for Li-ion secondary batteries

被引:90
|
作者
Yu, Haiying [1 ]
Zhang, Xianfa [1 ]
Jalbout, A. F. [2 ]
Yan, Xuedong [1 ]
Pan, Xiumei [1 ]
Xie, Haiming [1 ]
Wang, Rongshun [1 ]
机构
[1] NE Normal Univ, Inst Funct Mat, Dept Chem, Changchun 130024, Jilin, Peoples R China
[2] Univ Nacl Autonoma Mexico, Inst Quim, Mexico City 04510, DF, Mexico
关键词
Li-ion batteries; Li4Ti5O12/PAS; electronic conductivity; high-rate characteristics; cycle characteristics;
D O I
10.1016/j.electacta.2007.12.052
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In recent years, spinel lithium titanate (Li4Ti5O12) as a superior anode material for energy storage battery has attracted a great deal of attention because of the excellent Li-ion insertion and extraction reversibility. However, the high-rate characteristics of this material should be improved if it is used as an active material in large batteries. One effective way to achieve this is to prepare electrode materials coated with carbon. A Li4Ti5O12/polyacene (PAS) composite were first prepared via an in situ carbonization of phenol-formaldehyde (PF) resin route to form carbon-based composite. The SEM showed that the Li4Ti5O12 particles in the composite were more rounded and smaller than the pristine one. The PAS was uniformly dispersed between the Li4Ti5O12 particles, which improved the electrical contact between the corresponding Li4Ti5O12 particles, and hence the electronic conductivity of composite material. The electronic conductivity of Li4Ti5O12/PAS composite is 10(-1) S cm(-1), which is much higher than 10(-9) S cm(-1) of the pristine Li4Ti5O12. High specific capacity, especially better high-rate performance was achieved with this Li4Ti5O12/PAS electrode material. The initial specific capacity of the sample is 144 mAh/g at 3 C, and it is still 126.2 mAh/g after 200 cycles. By increasing the current density, the sample still maintains excellent cycle performance. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4200 / 4204
页数:5
相关论文
共 50 条
  • [41] The high-rate performance of the newly designed Li4Ti5O12/Cu composite anode for lithium ion batteries
    Huang, Shahua
    Wen, Zhaoyin
    Lin, Bin
    Han, Jinduo
    Xu, Xiaogang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2008, 457 (1-2) : 400 - 403
  • [42] Nitridated mesoporous Li4Ti5O12 spheres for high-rate lithium-ion batteries anode material
    Zhao, Yunyan
    Pang, Shuping
    Zhang, Chuanjian
    Zhang, Qinghua
    Gu, Lin
    Zhou, Xinhong
    Li, Guicun
    Cui, Guanglei
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2013, 17 (05) : 1479 - 1485
  • [43] Synthesis, characterization and electrical studies of Nb-Substituted Li4Ti5O12 anode materials for Li-ion batteries
    Babu, B. Vikram
    Reddi, M. Sushma
    Surendra, K.
    Krishna, A. Rama
    Samatha, K.
    Veeraiah, V.
    MATERIALS TODAY-PROCEEDINGS, 2021, 43 : 1485 - 1490
  • [44] Soccerene-like Li4Ti5O12/C as anode materials for fast-charging Li-ion batteries
    Fang, Wei
    Zhang, Lingling
    Dong, Enjie
    Yang, Lijie
    Zhang, Hongyuan
    Wan, Xin
    Wang, Yinghe
    Lou, Shuaifeng
    Che, Guangbo
    Yin, Geping
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 929
  • [45] Electrochemical characteristics of Ge incorporated Li4Ti5O12 as an anode for Li-ion battery applications
    Sreejith, O. V.
    Indu, M. S.
    Alexander, George V.
    Murugan, Ramaswamy
    MATERIALS TODAY COMMUNICATIONS, 2021, 27
  • [46] Ru-doped Li4Ti5O12 anode materials for high rate lithium-ion batteries
    Wang, Wei
    Wang, Hualing
    Wang, Shubo
    Hu, Yuejiao
    Tian, Qixiang
    Jiao, Shuqiang
    JOURNAL OF POWER SOURCES, 2013, 228 : 244 - 249
  • [47] Nanosheet-assembled hierarchical Li4Ti5O12 microspheres for high-volumetric-density and high-rate Li-ion battery anode
    Wang, Dongdong
    Liu, Haodong
    Li, Mingqian
    Wang, Xuefeng
    Bai, Shuang
    Shi, Yang
    Tian, Jianhua
    Shan, Zhongqiang
    Meng, Ying Shirley
    Liu, Ping
    Chen, Zheng
    ENERGY STORAGE MATERIALS, 2019, 21 : 361 - 371
  • [48] Synthesis and electrochemical properties of Li4Ti5O12/graphene composite as an anode material for Li-ion batteries
    Zhang, Lihui
    Xu, Yuxing
    Liu, Zhenfa
    Wei, Aijia
    Li, Wen
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2019, 38 (02): : 949 - 955
  • [49] Li4Ti5O12/TiO2-SiO2 and Li4Ti5O12/SiO2 composites as an anode material for Li-ion batteries
    Kurc, Beata
    IONICS, 2018, 24 (01) : 121 - 131
  • [50] Li4Ti5O12/TiO2-SiO2 and Li4Ti5O12/SiO2 composites as an anode material for Li-ion batteries
    Beata Kurc
    Ionics, 2018, 24 : 121 - 131