Developing the Actuator Disk Model to Predict the Fluid-Structure Interaction in Numerical Simulation of Multimegawatt Wind Turbine Blades

被引:2
|
作者
Behrouzifar, Ali [1 ]
Darbandi, Masoud [1 ]
机构
[1] Sharif Univ Technol, Ctr Excellence Aerosp Syst, Dept Aerosp Engn, Tehran, Iran
关键词
actuator disk model; wind turbine; flexible blade; fluid-structure interaction; blade element momentum theory; numerical study; renewable energy; AEROELASTIC ANALYSIS; 3D SIMULATION; FAR-WAKE; CFD; FLOW; ROTORS; VALIDATION;
D O I
10.1115/1.4044576
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The fluid-structure interaction (FSI) is generally addressed in multimegawatt wind turbine calculations. From the fluid flow perspective, the semi-analytical approaches, like actuator disk (AD) model, were commonly used in wind turbine rotor calculations. Indeed, the AD model can effectively reduce the computational cost of full-scale numerical methods. Additionally, it can substantially improve the results of pure analytical methods. Despite its great advantages, the AD model has not been developed to simulate the FSI problem in wind turbine simulations. This study first examines the effect of constant (rigid) cone angle on the performance of the chosen benchmark wind turbine. As a major contribution, this work subsequently extends the rigid AD model to nonrigid applications to suitably simulate the FSI. The new developed AD-FSI solver uses the finite-volume method to calculate the aerodynamic loads and the beam theory to predict the structural behaviors. A benchmark megawatt wind turbine is simulated to examine the accuracy of the newly developed AD-FSI solver. Next, the results of this solver are compared with the results of other researchers, who applied various analytical and numerical methods to obtain their results. The comparisons indicate that the new developed solver calculates the aerodynamic loads reliably and predicts the blade deflection very accurately.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [2] Fluid-structure Interaction Simulation of Wind Turbine
    Lin, Donglong
    Pang, Zhao
    Zhang, Kexin
    You, Shuang
    ADVANCES IN MECHATRONICS AND CONTROL ENGINEERING III, 2014, 678 : 556 - +
  • [3] A New Computational Model for Fluid-Structure Interaction Phenomena in Wind-Turbine Blades
    Ponta, F. L.
    Otero, A. D.
    Lago, L. I.
    CLEAN TECHNOLOGY 2008: BIO ENERGY, RENEWABLES, GREEN BUILDING, SMART GRID, STORAGE, AND WATER, 2008, : 160 - 163
  • [4] Simulation of the fluid-structure interaction of a floating wind turbine
    Wiegard, Bjarne
    Radtke, Lars
    Koenig, Marcel
    Abdel-Maksoud, Moustafa
    Duester, Alexander
    SHIPS AND OFFSHORE STRUCTURES, 2019, 14 (sup1) : S207 - S218
  • [5] Fluid-Structure Interaction Simulations of Wind Turbine Blades with Pointed Tips
    Huque, Ziaul
    Zemmouri, Fadoua
    Lu, Haidong
    Kommalapati, Raghava Rao
    ENERGIES, 2024, 17 (05)
  • [6] Numerical Fluid-Structure Interaction Analysis of a Wells Turbine With Flexible Blades
    Kincaid, Kellis C.
    MacPhee, David W.
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2020, 142 (08):
  • [7] Numerical Simulation Method for Fluid-Structure Interaction in Compressor Blades
    Li, Xuefeng
    Huang, Xiuquan
    Liu, Chao
    MATERIALS SCIENCE, CIVIL ENGINEERING AND ARCHITECTURE SCIENCE, MECHANICAL ENGINEERING AND MANUFACTURING TECHNOLOGY, PTS 1 AND 2, 2014, 488-489 : 914 - 917
  • [8] Fluid-Structure Interaction Model of a Wind Turbine Blade
    Abu Raihan, Gazi
    Chakravarty, Uttam K.
    PROCEEDINGS OF ASME 2023 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2023, VOL 4, 2023,
  • [9] A numerical investigation of fluid-structure coupling of 3 MW wind turbine blades
    Zhu, Ren-Sheng
    Zhao, Hong-Ling
    Peng, Ji-You
    Li, Jun-Peng
    Wang, Shi-Qi
    Zhao, Han
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2016, 13 (03) : 241 - 247
  • [10] Fluid-structure interaction of FRP wind turbine blades under aerodynamic effect
    Lee, Ya-Jung
    Jhan, Yu-Ti
    Chung, Cheng-Hsien
    COMPOSITES PART B-ENGINEERING, 2012, 43 (05) : 2180 - 2191