A Deep Learning-based Approach to Anomaly Detection with 2-Dimensional Data in Manufacturing

被引:0
|
作者
Maggipinto, Marco [1 ]
Beghi, Alessandro [1 ]
Susto, Gian Antonio [1 ]
机构
[1] Univ Padua, Dept Informat Engn, Padua, Italy
关键词
Anomaly detection; Convolutional Autoencoder; Deep Neural Networks; Industry; 4.0; Machine Learning; Semiconductor Manufacturing;
D O I
10.1109/indin41052.2019.8972027
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In modern manufacturing scenarios, detecting anomalies in production systems is pivotal to keep high-quality standards and reduce costs. Even in the Industry 4.0 context, real-world monitoring systems are often simple and based on the use of multiple univariate control charts. Data-driven technologies offer a whole range of tools to perform multivariate data analysis that allow to implement more effective monitoring procedures. However, when dealing with complex data, common data-driven methods cannot be directly used, and a feature extraction phase must be employed. Feature extraction is a particularly critical operation, especially in anomaly detection tasks, and it is generally associated with information loss and low scalability. In this paper we consider the task of Anomaly Detection with two-dimensional, image-like input data, by adopting a Deep Learning-based monitoring procedure, that makes use of convolutional autoencoders. The procedure is tested on real Optical Emission Spectroscopy data, typical of semiconductor manufacturing. The results show that the proposed approach outperforms classical feature extraction procedures.
引用
收藏
页码:187 / 192
页数:6
相关论文
共 50 条
  • [31] High-Dimensional Energy Consumption Anomaly Detection: A Deep Learning-Based Method for Detecting Anomalies
    Pan, Haipeng
    Yin, Zhongqian
    Jiang, Xianzhi
    ENERGIES, 2022, 15 (17)
  • [32] An Evolutionary Deep Learning-Based Anomaly Detection Model for Securing Vehicles
    Kavousi-Fard, Abdollah
    Dabbaghjamanesh, Morteza
    Jin, Tao
    Su, Wencong
    Roustaei, Mahmoud
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (07) : 4478 - 4486
  • [33] A comprehensive review on deep learning-based methods for video anomaly detection
    Nayak, Rashmiranjan
    Pati, Umesh Chandra
    Das, Santos Kumar
    IMAGE AND VISION COMPUTING, 2021, 106
  • [34] Quantum deep learning-based anomaly detection for enhanced network security
    Hdaib, Moe
    Rajasegarar, Sutharshan
    Pan, Lei
    QUANTUM MACHINE INTELLIGENCE, 2024, 6 (01)
  • [35] MultiResEdge: A deep learning-based edge detection approach
    Muntarina, Kanija
    Mostafiz, Rafid
    Khanom, Fahmida
    Shorif, Sumaita Binte
    Uddin, Mohammad Shorif
    INTELLIGENT SYSTEMS WITH APPLICATIONS, 2023, 20
  • [36] CCLearner: A Deep Learning-Based Clone Detection Approach
    Li, Liuqing
    Feng, He
    Zhuang, Wenjie
    Meng, Na
    Ryder, Barbara
    2017 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE AND EVOLUTION (ICSME), 2017, : 249 - 259
  • [37] A novel deep learning-based approach for malware detection
    Shaukat, Kamran
    Luo, Suhuai
    Varadharajan, Vijay
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 122
  • [38] Deep learning-based data anomaly detection for highway slope structural health monitoring: A comparative study
    Dong, Shi
    Long, Zhiyou
    Zhang, Shiyuan
    Wang, Jianwei
    Zuo, Chen
    Yang, Chao
    Jiang, Jinyi
    Cui, Zhiwei
    Wan, Zhaolong
    TRANSPORTATION GEOTECHNICS, 2025, 51
  • [39] A deep learning-based approach for defect detection in powder bed fusion additive manufacturing using transfer learning
    Duman, Burhan
    Ozsoy, Koray
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2022, 37 (01): : 361 - 375
  • [40] Network Anomaly Intrusion Detection Based on Deep Learning Approach
    Wang, Yung-Chung
    Houng, Yi-Chun
    Chen, Han-Xuan
    Tseng, Shu-Ming
    SENSORS, 2023, 23 (04)