共 50 条
An Effective Design of Electrically Conducting Thin-Film Composite (TFC) Membranes for Bio and Organic Fouling Control in Forward Osmosis (FO)
被引:54
|作者:
Liu, Qing
[1
]
Qiu, Guanglei
[1
]
Zhou, Zhengzhong
[1
]
Li, Jingguo
[1
]
Amy, Gary Lee
[1
,2
]
Xie, Jianping
[1
]
Lee, Jim Yang
[1
]
机构:
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, 10 Kent Ridge Crescent, Singapore 119260, Singapore
[2] Clemson Univ, Coll Engn & Sci, Clemson, SC 29634 USA
基金:
新加坡国家研究基金会;
关键词:
HOLLOW-FIBER MEMBRANES;
INTERNAL CONCENTRATION POLARIZATION;
PRESSURE-RETARDED OSMOSIS;
NANOCOMPOSITE MEMBRANE;
OSMOTIC-PRESSURE;
FLUX BEHAVIOR;
WASTE-WATER;
REVERSE;
RESISTANCE;
LAYER;
D O I:
10.1021/acs.est.6b03402
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
The organic foulants and bacteria in secondary wastewater treatment can seriously impair the membrane performance in a water treatment plant. The embedded electrode approach using an externally applied potential to repel organic foulants and inhibit bacterial adhesion can effectively reduce the frequency of membrane replacement. Electrode embedment in membranes is often carried out by dispensing a conductor (e.g., carbon nanotubes, or CNTs) in the membrane substrate, which gives rise to two problems: the leaching-out of the conductor and a percolation limited membrane conductivity that results in an added energy cost. This study presents a facile method for the embedment of a continuous electrode in thin-film composite (TFC) forward osmosis (FO) membranes. Specifically, a conducting porous carbon paper is used as the understructure for the formation of a membrane substrate by the classical phase inversion process. The carbon paper and the membrane substrate polymer form an interpenetrating structure with good stability and low electrical resistance (only about 1 Omega/square). The membrane-electrode assembly was deployed as the cathode of an electrochemical cell, and showed good resistance to organic and microbial fouling with the imposition of a 2.0 V DC voltage. The carbon paper-based FO TFC membranes also possess good mechanical stability for practical use.
引用
收藏
页码:10596 / 10605
页数:10
相关论文