Multimodal Pedestrian Trajectory Prediction Based on Relative Interactive Spatial-Temporal Graph

被引:1
|
作者
Zhao, Duan [1 ,2 ]
Li, Tao [1 ,2 ]
Zou, Xiangyu [1 ,2 ]
He, Yaoyi [3 ]
Zhao, Lichang [3 ]
Chen, Hui [3 ]
Zhuo, Minmin [3 ]
机构
[1] China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221008, Jiangsu, Peoples R China
[2] Natl Joint Engn Lab Internet Appl Technol Mines, Xuzhou 221008, Jiangsu, Peoples R China
[3] Tiandi Changzhou Automat Co Ltd, Changzhou 213000, Jiangsu, Peoples R China
来源
IEEE ACCESS | 2022年 / 10卷
关键词
Trajectory; Predictive models; Hidden Markov models; Logic gates; Generative adversarial networks; Legged locomotion; Visualization; Pedestrian trajectory prediction; spatial-temporal graph; time attention; relative scaled dot product attention; generative adversarial network; ATTENTION; MODEL;
D O I
10.1109/ACCESS.2022.3200066
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Predicting and understanding pedestrian intentions is crucial for autonomous vehicles and mobile robots to navigate in a crowd. However, the movement of pedestrian is random. Pedestrian trajectory modeling needs to consider not only the past movement of pedestrians, the interaction between different pedestrians, the constraints of static obstacles in the scene, but also multi-modal of the human trajectory, which brings challenges to pedestrian trajectory prediction. Most of the existing trajectory prediction methods only consider the interaction between pedestrians in the scene, ignoring the static obstacles in the scene can also have impacts on the trajectory of pedestrian. In this paper, a scalable relative interactive spatial-temporal graph generation adversarial network architecture (RISTG-GAN) is proposed to generate a reasonable multi-modal prediction trajectory by considering the interaction effects of all agents in the scene. Our method extends recent work on trajectory prediction. First, LSTM nodes are flexibly used to model the spatial-temporal graph of human-environment interactions, and the spatial-temporal graph is converted into feed-forward differentiable feature coding, and the time attention module is proposed to capture the trajectory information in time domain and learn the time dependence in long time range. Then, we capture the relative importance of the interaction of all agents in the scene on the pedestrian trajectory through the improved relative scaled dot product attention and use the generative adversarial network architecture for training to generate reasonable pedestrian future trajectory distribution. Experiments on five commonly used real public datasets show that RISTG-GAN is better than previous work in terms of reasoning speed, accuracy and the rationality of trajectory prediction.
引用
收藏
页码:88707 / 88718
页数:12
相关论文
共 50 条
  • [41] Self-Growing Spatial Graph Networks for Pedestrian Trajectory Prediction
    Haddad, Sirin
    Lam, Siew-Kei
    2020 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2020, : 1140 - 1148
  • [42] Network Traffic Prediction with Attention-based Spatial-Temporal Graph Network
    Peng, Yufei
    Guo, Yingya
    Hao, Run
    Lin, Junda
    2023 IEEE 24TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE SWITCHING AND ROUTING, HPSR, 2023,
  • [43] Traffic Flow Prediction Based on Dynamic Graph Spatial-Temporal Neural Network
    Jiang, Ming
    Liu, Zhiwei
    MATHEMATICS, 2023, 11 (11)
  • [44] Hierarchical Traffic Flow Prediction Based on Spatial-Temporal Graph Convolutional Network
    Wang, Hanqiu
    Zhang, Rongqing
    Cheng, Xiang
    Yang, Liuqing
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (09) : 16137 - 16147
  • [45] Traffic Speed Prediction Based on Spatial-Temporal Fusion Graph Neural Network
    Liu, Zhongbo
    Li, Mingkui
    Zhao, Jianli
    Sun, Qiuxia
    Zhuo, Futong
    2021 IEEE 3rd International Conference on Frontiers Technology of Information and Computer, ICFTIC 2021, 2021, : 77 - 81
  • [46] Multimodal joint prediction of traffic spatial-temporal data with graph sparse attention mechanism and bidirectional temporal convolutional network
    Zhang, Dongran
    Yan, Jiangnan
    Polat, Kemal
    Alhudhaif, Adi
    Li, Jun
    ADVANCED ENGINEERING INFORMATICS, 2024, 62
  • [47] A General Traffic Flow Prediction Approach Based on Spatial-Temporal Graph Attention
    Tang, Cong
    Sun, Jingru
    Sun, Yichuang
    Peng, Mu
    Gan, Nianfei
    IEEE ACCESS, 2020, 8 : 153731 - 153741
  • [48] Transient Voltage Prediction Method Based on Spatial-Temporal Graph Convolutional Network
    Yang, Xintong
    Dong, Yu
    Wang, Jing
    Wang, Changjiang
    2022 9TH INTERNATIONAL FORUM ON ELECTRICAL ENGINEERING AND AUTOMATION, IFEEA, 2022, : 1174 - 1178
  • [49] Attention based spatial-temporal graph convolutional networks for boiler NOx prediction
    Zhou, Yongqing
    Hao, Dawei
    Fan, Yuchen
    Wen, Xintong
    Wei, Chang
    Liu, Xin
    Zhang, Wenzhen
    Wang, Heyang
    Meitan Xuebao/Journal of the China Coal Society, 2024, 49 (10): : 4127 - 4137
  • [50] Network traffic prediction with Attention-based Spatial-Temporal Graph Network
    Peng, Yufei
    Guo, Yingya
    Hao, Run
    Xu, Chengzhe
    COMPUTER NETWORKS, 2024, 243