Dynamic Data-Driven SAR Image Reconstruction Using Multiple GPUs

被引:9
|
作者
Wijayasiri, Adeesha [1 ]
Banerjee, Tania [1 ]
Ranka, Sanjay [1 ]
Sahni, Sartaj [1 ]
Schmalz, Mark [1 ]
机构
[1] Univ Florida, Dept Comp & Informat Sci & Engn, Gainesville, FL 32611 USA
关键词
Parallel processing; radar signal processing; remote sensing; satellite applications; synthetic aperture radar (SAR); ALGORITHM;
D O I
10.1109/JSTARS.2018.2873198
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The reconstruction of nxn-pixel synthetic aperture radar (SAR) imagery using a backprojection algorithm incurs O(n(2).m) cost, where m is the number of pulses. This paper presents dynamic data-driven multiresolution algorithms to speed up SAR backprojection on multiple graphics processing units (GPUs). A critical part of this spatially variant reconstruction process is load balancing, which circumvents asymmetric work assignment. Fine-tuned algorithms for GPUs are presented as a part of improving running time. Communication between processors is overlapped with GPU calculation to reduce communication time.
引用
收藏
页码:4326 / 4338
页数:13
相关论文
共 50 条
  • [31] Data-driven Multispectral Image Registration
    Yasir, Rahat
    Eramian, Mark
    Stavness, Ian
    Shirtliffe, Steve
    Duddu, Hema
    2018 15TH CONFERENCE ON COMPUTER AND ROBOT VISION (CRV), 2018, : 230 - 237
  • [32] Data-driven approach for dynamic homogenization using meta learning
    Shah, Aarohi
    Rimoli, Julian J.
    Computer Methods in Applied Mechanics and Engineering, 2022, 401
  • [33] Active data-driven design using dynamic product models
    Domazet, D.S.
    Choong, F.N.
    Sng, D.
    Ho, N.C.
    Lu, S.C.-Y.
    CIRP Annals - Manufacturing Technology, 1995, 44 (01) : 109 - 112
  • [34] Data-Driven Differential Dynamic Programming Using Gaussian Processes
    Pan, Yunpeng
    Theodorou, Evangelos A.
    2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 4467 - 4472
  • [35] Data-driven approach for dynamic homogenization using meta learning
    Shah, Aarohi
    Rimoli, Julian J.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 401
  • [36] DATA-DRIVEN WIND SPEED ESTIMATION USING MULTIPLE MICROPHONES
    Mirabilii, Daniele
    Lakshminarayana, Kishor Kayyar
    Mack, Wolfgang
    Habets, Emanueel A. P.
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 576 - 580
  • [37] Data-driven Mixed Precision Sparse Matrix Vector Multiplication for GPUs
    Ahmad, Khalid
    Sundar, Hari
    Hall, Mary
    ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION, 2019, 16 (04)
  • [38] Spatial reconstruction of sound fields using local and data-driven functions
    Hahmann, Manuel
    Verburg, Samuel A.
    Fernandez-Grande, Efren
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2021, 150 (06): : 4417 - 4428
  • [39] Data-driven analysis and prediction of dynamic postprandial metabolic response to multiple dietary challenges using dynamic mode decomposition
    Skantze, Viktor
    Jirstrand, Mats
    Brunius, Carl
    Sandberg, Ann-Sofie
    Landberg, Rikard
    Wallman, Mikael
    FRONTIERS IN NUTRITION, 2024, 10
  • [40] Data-Driven Partially Observable Dynamic Processes Using Adaptive Dynamic Programming
    Zhong, Xiangnan
    Ni, Zhen
    Tang, Yufei
    He, Haibo
    2014 IEEE SYMPOSIUM ON ADAPTIVE DYNAMIC PROGRAMMING AND REINFORCEMENT LEARNING (ADPRL), 2014, : 156 - 163