Dynamic Data-Driven SAR Image Reconstruction Using Multiple GPUs

被引:9
|
作者
Wijayasiri, Adeesha [1 ]
Banerjee, Tania [1 ]
Ranka, Sanjay [1 ]
Sahni, Sartaj [1 ]
Schmalz, Mark [1 ]
机构
[1] Univ Florida, Dept Comp & Informat Sci & Engn, Gainesville, FL 32611 USA
关键词
Parallel processing; radar signal processing; remote sensing; satellite applications; synthetic aperture radar (SAR); ALGORITHM;
D O I
10.1109/JSTARS.2018.2873198
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The reconstruction of nxn-pixel synthetic aperture radar (SAR) imagery using a backprojection algorithm incurs O(n(2).m) cost, where m is the number of pulses. This paper presents dynamic data-driven multiresolution algorithms to speed up SAR backprojection on multiple graphics processing units (GPUs). A critical part of this spatially variant reconstruction process is load balancing, which circumvents asymmetric work assignment. Fine-tuned algorithms for GPUs are presented as a part of improving running time. Communication between processors is overlapped with GPU calculation to reduce communication time.
引用
收藏
页码:4326 / 4338
页数:13
相关论文
共 50 条
  • [1] Dynamic Data Driven Image Reconstruction Using Multiple GPUs
    Wijayasiri, Adeesha
    Banerjee, Tania
    Ranka, Sanjay
    Sahni, Sartaj
    Schmalz, Mark
    2016 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT), 2016, : 241 - 246
  • [2] SAR Image Despeckling Using Data-Driven Tight Frame
    Feng, WenSen
    Lei, Hong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (09) : 1455 - 1459
  • [3] Dynamic and Data-Driven Classification for Polarimetric SAR Images
    Uhlmann, S.
    Kiranyaz, S.
    Ince, T.
    Gabbouj, M.
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XVII, 2011, 8180
  • [4] Supporting data-driven I/O on GPUs using GPUfs
    Shahar, Sagi
    Silberstein, Mark
    PROCEEDINGS OF THE 9TH ACM INTERNATIONAL SYSTEMS AND STORAGE CONFERENCE (SYSTOR'16), 2016,
  • [5] Reconstruction of dynamic image series from undersampled MRI data using data-driven model consistency condition (MOCCO)
    Velikina, Julia V.
    Samsonov, Alexey A.
    MAGNETIC RESONANCE IN MEDICINE, 2015, 74 (05) : 1279 - 1290
  • [6] Performance Evaluation of SAR Image Reconstruction on CPUs and GPUs
    Kraja, Fisnik
    Murarasu, Alin
    Acher, Georg
    Bode, Arndt
    2012 IEEE AEROSPACE CONFERENCE, 2012,
  • [7] Electron tomography image reconstruction using data-driven adaptive compressed sensing
    Al-Afeef, Ala'
    Cockshott, W. Paul
    MacLaren, Ian
    McVitie, Stephen
    SCANNING, 2016, 38 (03) : 251 - 276
  • [8] Prediction of spatiotemporal dynamic systems by data-driven reconstruction
    Ren H.-H.
    Fan M.-H.
    Bai Y.-L.
    Ma X.-Y.
    Zhao J.-H.
    Chaos, Solitons and Fractals, 2024, 185
  • [9] Dynamic Data Driven SAR Reconstruction on Hybrid Multicore systems
    Wijayasiri, Adeesha
    Ranka, Sanjay
    Sahni, Sartaj
    2018 NINTH INTERNATIONAL GREEN AND SUSTAINABLE COMPUTING CONFERENCE (IGSC), 2018,
  • [10] Undersampled MR Image Reconstruction with Data-Driven Tight Frame
    Liu, Jianbo
    Wang, Shanshan
    Peng, Xi
    Liang, Dong
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2015, 2015