On Higher Moments of Fourier Coefficients of Holomorphic Cusp Forms

被引:18
|
作者
Lue, Guangshi [1 ]
机构
[1] Shandong Univ, Dept Math, Jinan 250100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Fourier coefficients of cusp forms; symmetric power L-function; POWER L-FUNCTIONS; AUTOMORPHIC REPRESENTATIONS; PLANCHEREL MEASURES; EULER PRODUCTS; GL(2); CLASSIFICATION; ZEROS; 4TH;
D O I
10.4153/CJM-2011-010-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S(k)(Gamma) be the space of holomorphic cusp forms of even integral weight k for the full modular group. Let lambda(f) (n) and lambda(g)(n) be the n-th normalized Fourier coefficients of two holomorphic Hecke eigencuspforms f (z), g(z) is an element of S(k)(Gamma), respectively. In this paper we are able to show the following results about higher moments of Fourier coefficients of holomorphic cusp forms. (i) For any epsilon > 0, we have Sigma n <= x lambda(5)(f)(n) << f,epsilon x(15/16+epsilon) and Sigma n <= x lambda(7)(f)(n) << f,epsilon x(63/64+epsilon) (ii) If sym(3) pi(f) not congruent to sym(3) pi(g), then for any epsilon > 0, we have Sigma n <= x lambda(3)(f)(n)lambda(3)(g)(n) << f,epsilon x(31/32+epsilon) ; In sym(2) pi(f) not congruent to sym(2) pi(g), then for any epsilon > 0, we have Sigma n <= x lambda(4)(f)(n) lambda(2)(g) (n) = cx log x + c'x + O(f,epsilon) x(31/32+)epsilon ; In sym(2) pi(f) not congruent to sym(2) pi(g) and sym(4) pi(f) not congruent to sym(4) pi(g) then for any epsilon > 0, we have Sigma n <= x lambda(4)(f)(n) lambda(4)(g)(n) = zP(log x) + P(f,epsilon) x(127/128+epsilon) , where P(x) is a polynomial of degree 3.
引用
收藏
页码:634 / 647
页数:14
相关论文
共 50 条
  • [21] On the signs of Fourier coefficients of cusp forms
    Knopp, M
    Kohnen, W
    Pribitkin, W
    RAMANUJAN JOURNAL, 2003, 7 (1-3): : 269 - 277
  • [22] On products of Fourier coefficients of cusp forms
    Hofmann, Eric
    Kohnen, Winfried
    FORUM MATHEMATICUM, 2017, 29 (01) : 245 - 250
  • [23] SUMS OF FOURIER COEFFICIENTS OF CUSP FORMS
    Lau, Yuk-Kam
    Lue, Guangshi
    QUARTERLY JOURNAL OF MATHEMATICS, 2011, 62 (03): : 687 - 716
  • [24] On the Signs of Fourier Coefficients of Cusp Forms
    Marvin Knopp
    Winfried Kohnen
    Wladimir Pribitkin
    The Ramanujan Journal, 2003, 7 : 269 - 277
  • [25] ESTIMATES FOR FOURIER COEFFICIENTS OF CUSP FORMS
    RAGHAVAN, S
    WEISSAUER, R
    NUMBER THEORY AND DYNAMICAL SYSTEMS, 1989, 134 : 87 - 102
  • [26] FOURIER COEFFICIENTS OF CERTAIN CUSP FORMS
    WATABE, M
    PROCEEDINGS OF THE JAPAN ACADEMY, 1973, 49 (08): : 578 - 582
  • [27] On signs of Fourier coefficients of cusp forms
    Matomaki, Kaisa
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2012, 152 : 207 - 222
  • [28] Sums of Fourier coefficients of holomorphic cusp forms over integers without large prime factors
    Wang, Dan
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (04): : 1090 - 1109
  • [29] Sums of Fourier coefficients of holomorphic cusp forms over integers without large prime factors
    Dan Wang
    Indian Journal of Pure and Applied Mathematics, 2022, 53 : 1090 - 1109
  • [30] FOURIER COEFFICIENTS OF HILBERT CUSP FORMS ASSOCIATED WITH MIXED HILBERT CUSP FORMS
    Lee, Min Ho
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2010, 79 (01): : 19 - 29