Asymptotic behavior of solutions to an area-preserving motion by crystalline

被引:0
|
作者
Yazaki, Shigetoshi [1 ]
机构
[1] Miyazaki Univ, Fac Engn, Miyazaki 8892192, Japan
关键词
essentially admissible polygon; crystalline curvature; the Wulff shape; isoperimetric inequality;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Asymptotic behavior of solutions of an area-preserving crystalline curvature flow equation is investigated. In this equation, the area enclosed by the solution polygon is preserved, while its total interfacial crystalline energy keeps on decreasing. In the case where the initial polygon is essentially admissible and convex, if the maximal existence time is finite, then vanishing edges are essentially admissible edges. This is a contrast to the case where the initial polygon is admissible and convex: a solution polygon converges to the boundary of the Wulff shape without vanishing edges as time tends to infinity.
引用
收藏
页码:903 / 912
页数:10
相关论文
共 50 条
  • [31] Area-preserving approximations of polygonal paths
    Bose, Prosenjit
    Cabello, Sergio
    Cheong, Otfried
    Gudmundsson, Joachim
    van Kreveld, Marc
    Speckmann, Bettina
    JOURNAL OF DISCRETE ALGORITHMS, 2006, 4 (04) : 554 - 566
  • [32] RELAXATION IN PERTURBED AREA-PRESERVING MAPS
    BREYMANN, W
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1993, 48 (5-6): : 663 - 665
  • [33] TROPICAL DYNAMICS OF AREA-PRESERVING MAPS
    Filip, Simion
    JOURNAL OF MODERN DYNAMICS, 2019, 14 : 179 - 226
  • [34] Generic area-preserving reversible diffeomorphisms
    Bessa, Mario
    Carvalho, Maria
    Rodrigues, Alexandre
    NONLINEARITY, 2015, 28 (06) : 1695 - 1720
  • [35] Area-Preserving Parameterizations for Spherical Ellipses
    Guillen, Ibon
    Urena, Carlos
    King, Alan
    Fajardo, Marcos
    Georgiev, Iliyan
    Lopez-Moreno, Jorge
    Jarabo, Adrian
    COMPUTER GRAPHICS FORUM, 2017, 36 (04) : 179 - 187
  • [36] Area-Preserving Parameterization with Tutte Regularization
    Ke, Jingyao
    Xu, Bin
    Yang, Zhouwang
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2023, 11 (04) : 727 - 740
  • [37] ON A PLANAR AREA-PRESERVING CURVATURE FLOW
    Chao, Xiao-Li
    Ling, Xiao-Ran
    Wang, Xiao-Liu
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (05) : 1783 - 1789
  • [38] A Dichotomy in Area-Preserving Reversible Maps
    Bessa, Mario
    Rodrigues, Alexandre A. P.
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2016, 15 (02) : 309 - 326
  • [39] THE MULTIPLICITY OF BIFURCATIONS FOR AREA-PRESERVING MAPS
    MACKAY, RS
    SHARDLOW, T
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1994, 26 : 382 - 394
  • [40] A SEMICLASSICAL QUANTIZATION OF AREA-PRESERVING MAPS
    TABOR, M
    PHYSICA D, 1983, 6 (02): : 195 - 210