pH-Responsive Succinoglycan-Carboxymethyl Cellulose Hydrogels with Highly Improved Mechanical Strength for Controlled Drug Delivery Systems

被引:25
|
作者
Shin, Younghyun [1 ]
Kim, Dajung [1 ]
Hu, Yiluo [1 ]
Kim, Yohan [1 ]
Hong, In Ki [2 ]
Kim, Moo Sung [3 ]
Jung, Seunho [1 ,4 ,5 ]
机构
[1] Konkuk Univ, Ctr Biotechnol Res UBITA CBRU, Dept Biosci & Biotechnol, Seoul 05029, South Korea
[2] Kolmar Korea, Covergence Technol Lab, 61,Heolleung Ro 8 Gil, Seoul 06800, South Korea
[3] Macrocare, 32 Gangni 1 Gil, Cheongju 28126, South Korea
[4] Konkuk Univ, Ctr Biotechnol Res UBITA CBRU, Dept Syst Biotechnol, Seoul 05029, South Korea
[5] Konkuk Univ, Inst Ubiquitous Informat Technol & Applicat UBITA, Seoul 05029, South Korea
基金
新加坡国家研究基金会;
关键词
hydrogels; carboxymethyl cellulose; succinoglycan; metal coordination; drug delivery; swelling properties; GELATIN HYDROGELS; XANTHAN GUM; ACID; POLYACRYLAMIDE; POLYMERIZATION; COORDINATION; RELEASE; BEADS; FE3+;
D O I
10.3390/polym13183197
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Carboxymethyl cellulose (CMC)-based hydrogels are generally superabsorbent and biocompatible, but their low mechanical strength limits their application. To overcome these drawbacks, we used bacterial succinoglycan (SG), a biocompatible natural polysaccharide, as a double crosslinking strategy to produce novel interpenetrating polymer network (IPN) hydrogels in a non-bead form. These new SG/CMC-based IPN hydrogels significantly increased the mechanical strength while maintaining the characteristic superabsorbent property of CMC-based hydrogels. The SG/CMC gels exhibited an 8.5-fold improvement in compressive stress and up to a 6.5-fold higher storage modulus (G ') at the same strain compared to the CMC alone gels. Furthermore, SG/CMC gels not only showed pH-controlled drug release for 5-fluorouracil but also did not show any cytotoxicity to HEK-293 cells. This suggests that SG/CMC hydrogels could be used as future biomedical biomaterials for drug delivery.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Physically cross-linked pH-responsive hydrogels with tunable formulations for controlled drug delivery
    Suhag, Deepa
    Bhatia, Rohan
    Das, Souvik
    Shakeel, Adeeba
    Ghosh, Abhisek
    Singh, Anirudha
    Sinha, O. P.
    Chakrabarti, Sandip
    Mukherjee, Monalisa
    RSC ADVANCES, 2015, 5 (66) : 53963 - 53972
  • [22] Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery
    Amin, Mohd Cairul Iqbal Mohd
    Ahmad, Naveed
    Halib, Nadia
    Ahmad, Ishak
    CARBOHYDRATE POLYMERS, 2012, 88 (02) : 465 - 473
  • [23] pH-Responsive guar gum hydrogels for controlled delivery of dexamethasone to the intestine
    Das, Subhraseema
    Subuddhi, Usharani
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2015, 79 : 856 - 863
  • [24] pH-responsive polymeric vesicles as drug delivery systems
    Dubos, Ashley
    Fish, Daryle
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [25] Preparation and application of pH-responsive drug delivery systems
    Ding, Haitao
    Tan, Ping
    Fu, Shiqin
    Tian, Xiaohe
    Zhang, Hu
    Ma, Xuelei
    Gu, Zhongwei
    Luo, Kui
    JOURNAL OF CONTROLLED RELEASE, 2022, 348 : 206 - 238
  • [26] Biodegradable Thermo- and pH-Responsive Hydrogels for Oral Drug Delivery
    Zhang, Zhe
    Chen, Li
    Deng, Mingxiao
    Bai, Yunyan
    Chen, Xuesi
    Jing, Xiabin
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2011, 49 (13) : 2941 - 2951
  • [27] Synthesis and Characterization of Temperature-/pH-Responsive Hydrogels for Drug Delivery
    Li, Qi
    Ma, Wenhao
    Ma, Hua
    Shang, Hongzhou
    Qiao, Ning
    Sun, Xiaoran
    CHEMISTRYSELECT, 2023, 8 (03):
  • [28] Design of pH-responsive albumin-alginate hydrogels for drug delivery
    de Oliveira, Kamila A. L.
    Sitta, Danielly L. A.
    Guilherme, Marcos R.
    Muniz, Edvani C.
    Rubira, Adley F.
    JOURNAL OF CONTROLLED RELEASE, 2017, 259 : E5 - E5
  • [29] Preparation and characterization of pH-sensitive carboxymethyl cellulose-based hydrogels for controlled drug delivery
    Pourkhatoun, Mina
    Kalantari, Maryam
    Kamyabi, Ata
    Moradi, Ali
    POLYMER INTERNATIONAL, 2022, 71 (08) : 991 - 998
  • [30] Temperature/pH-Responsive Carboxymethyl Cellulose/Poly (N-isopropyl acrylamide) Interpenetrating Polymer Network Aerogels for Drug Delivery Systems
    Liu, Zhongming
    Zhang, Sufeng
    Gao, Chao
    Meng, Xia
    Wang, Shoujuan
    Kong, Fangong
    POLYMERS, 2022, 14 (08)