A model of fuzzy linguistic IRS based on multi-granular linguistic information

被引:98
|
作者
Herrera-Viedma, E [1 ]
Cordón, O
Luque, M
Lopez, AG
Muñoz, AM
机构
[1] Univ Granada, Lib Sci Studies Sch, Dept Comp Sci & AI, E-18071 Granada, Spain
[2] Univ Granada, Dept Lib Sci Studies, E-18071 Granada, Spain
关键词
information retrieval; linguistic modelling; multi-granular linguistic information;
D O I
10.1016/j.ijar.2003.07.009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An important question in IRSs is how to facilitate the IRS-user interaction, even more when the complexity of the fuzzy query language makes difficult to formulate user queries. The use of linguistic variables to represent the input and output information in the retrieval process of IRSs significantly improves the IRS-user interaction. In the activity of an IRS, there are aspects of different nature to be assessed, e.g., the relevance of documents, the importance of query terms, etc. Therefore, these aspects should be assessed with different uncertainty degrees, i.e., using several label sets with different granularity of uncertainty. In this contribution, an IRS based on fuzzy multi-granular linguistic information and a method to process the multi-granular linguistic information are proposed. The system accepts Boolean queries whose terms can be simultaneously weighted by means of ordinal linguistic values according to three semantics: a symmetrical threshold semantics, a relative importance semantics and a quantitative semantics. In the three semantics, the linguistic weights are represented by the linguistic variable "Importance", but assessed on different label sets S-1, S-2 and S-3, respectively. The IRS evaluates weighted queries and obtains the linguistic retrieval status values of documents represented by the linguistic variable "Relevance" which is expressed on a different label set S'. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:221 / 239
页数:19
相关论文
共 50 条
  • [21] Determining importance ratings of patients' requirements with multi-granular linguistic evaluation information
    Li, Xiaobing
    He, Zhen
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2017, 55 (14) : 4110 - 4122
  • [22] Using Multi-granular Fuzzy Linguistic Modelling Methods to Represent Social Networks Related Information in an Organized Way
    Morente-Molinera, J. A.
    Cabrerizo, F. J.
    Alonso, S.
    Martinez, M. A.
    Herrera-Viedma, E.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2020, 15 (02)
  • [23] Using multi-granular fuzzy linguistic modelling methods for supervised classification learning purposes
    Morente-Molinera, J. A.
    Mezei, J.
    Carlsson, C.
    Herrera-Viedma, E.
    2017 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2017,
  • [24] A Decision Support System for Decision Making in Changeable and Multi-Granular Fuzzy Linguistic Contexts
    Morente-Molinera, J. A.
    Al-Hmouz, Rami
    Morfeq, Ali
    Balamash, Abdullah Saeed
    Herrera-Viedma, E.
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2016, 26 (3-5) : 485 - 514
  • [25] A novel linguistic approach for multi-granular information fusion and decision-making using risk-based linguistic D numbers
    Seiti, Hamidreza
    Hafezalkotob, Ashkan
    Herrera-Viedma, Enrique
    Information Sciences, 2020, 530 : 43 - 65
  • [26] A novel linguistic approach for multi-granular information fusion and decision-making using risk-based linguistic D numbers
    Seiti, Hamidreza
    Hafezalkotob, Ashkan
    Herrera-Viedma, Enrique
    INFORMATION SCIENCES, 2020, 530 : 43 - 65
  • [27] Probabilistic linguistic vector-term set and its application in group decision making with multi-granular linguistic information
    Zhai, Yuling
    Xu, Zeshui
    Liao, Huchang
    APPLIED SOFT COMPUTING, 2016, 49 : 801 - 816
  • [28] A multi-granular linguistic model for management decision-making in performance appraisal
    Rocío de Andrés
    José Luis García-Lapresta
    Luis Martínez
    Soft Computing, 2010, 14 : 21 - 34
  • [29] Improving the user-system interaction in a web multi-agent system using fuzzy multi-granular linguistic information
    Herrera-Viedma, E.
    Porcel, C.
    Lopez-Herrera, A. G.
    Alonso, S.
    Zafra, A.
    FLEXIBLE QUERY ANSWERING SYSTEMS, PROCEEDINGS, 2006, 4027 : 390 - 403
  • [30] A multi-granular linguistic model for management decision-making in performance appraisal
    de Andres, Rocio
    Luis Garcia-Lapresta, Jose
    Martinez, Luis
    SOFT COMPUTING, 2010, 14 (01) : 21 - 34