Optical processes of organic emitters in optical microcavity - art. no. 663907

被引:0
|
作者
Tien, Kun-Cheng [1 ]
Lin, Hao-Wu [1 ]
Lin, Chung-Liang [1 ]
Chang, Han-Chieh [1 ]
Cho, Ting-Yi [1 ]
Yang, Chih-Jen [1 ]
Chang, Chih-Hao [1 ]
Wu, Chung-Chih [1 ]
机构
[1] Natl Taiwan Univ, Dept Elect Engn, Grad Inst Electroopt Engn, Taipei 10617, Taiwan
来源
NANOPHOTONIC MATERIALS IV | 2007年 / 6639卷
关键词
microcavity; OLED; resonant wavelength; capping layer;
D O I
10.1117/12.735224
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Optical characteristics of microcavity organic light-emitting devices (OLEDs) having two mirrors are examined. Analyses show that a high-reflection back mirror and a low-loss high-reflection exit mirror are essential for such microcavity devices to obtain luminance enhancement relative to conventional noncavity devices. The capping layer in the composite mirror plays the role of enhancing reflection and reducing absorption loss, rather than enhancing transmission. In addition, by setting the normal-direction resonant wavelength around the peak wavelength of the intrinsic emission, one obtains the highest luminance enhancement along the normal direction and hardly detectable color shift with viewing angles, yet accompanied by highly directed emission and lower external quantum efficiency. On the other hand, the highest enhancement in external quantum efficiencies and the most uniform brightness distribution are obtained by setting the normal-direction resonant wavelength 20-40 nm longer than the peak wavelength of the intrinsic emission, yet with noticeable color shift over viewing angles. Due to the tradeoffs between different emission characteristics in choosing the resonant wavelength, the exact design of microcavity devices would depend on actual applications.
引用
收藏
页码:63907 / 63907
页数:12
相关论文
共 50 条
  • [41] Information aspects of optical coherence tomography - art. no. 616201
    Mazurenko, Y
    International Conference on Laser, Applications, and Technologies 2005: Laser Sensing, Imaging, and Information Technologies, 2006, 6162 : 16201 - 16201
  • [42] Coherent amplified optical coherence tomography - art. no. 662718
    Zhang, Jun
    Rao, Bin
    Chen, Zhongping
    OPTICAL COHERENCE TOMOGRAPHY AND COHERENCE TECHNIQUES III, 2007, 6627 : 62718 - 62718
  • [43] Rays propagation in optical tunnel - art. no. 68340A
    Liao Zhijie
    Xing Tingwen
    OPTICAL DESIGN AND TESTING III, PTS 1 AND 2, 2008, 6834 : A8340 - A8340
  • [44] Stochastic entrainment of optical power dropouts -: art. no. 021106
    Buldú, JM
    García-Ojalvo, J
    Mirasso, CR
    Torrent, MC
    PHYSICAL REVIEW E, 2002, 66 (02): : 1 - 021106
  • [45] Questions of reliability of joints optical closures - art. no. 627706
    Alekhin, Nikolay I.
    Burdin, Vladimir A.
    Bourdine, Anton V.
    Nikulina, Tatyana G.
    Dmitriev, Eugeny V.
    Optical Technologies for Telecommunications 2005, 2005, 6277 : 27706 - 27706
  • [46] Adjustable optical anisotropy in porous GaAs -: art. no. 042108
    Kochergin, V
    Christophersen, M
    Föll, H
    APPLIED PHYSICS LETTERS, 2005, 86 (04) : 042108 - 1
  • [47] Implementation of spin Hamiltonians in optical lattices -: art. no. 250405
    García-Ripoll, JJ
    Martin-Delgado, MA
    Cirac, JI
    PHYSICAL REVIEW LETTERS, 2004, 93 (25) : 250405 - 1
  • [48] Local observation and spectroscopy of optical modes in an active photonic-crystal microcavity (vol 94, art no 113907, 2005) -: art. no. 209903
    Louvion, N
    Gérard, D
    Mouette, J
    de Fornel, F
    Seassal, C
    Letartre, X
    Rahmani, A
    Callard, S
    PHYSICAL REVIEW LETTERS, 2005, 94 (20)
  • [49] Optical and morphological study of disorder in opals -: art. no. 063502
    Palacios-Lidón, E
    Juárez, BH
    Castillo-Martínez, E
    López, C
    JOURNAL OF APPLIED PHYSICS, 2005, 97 (06)
  • [50] New worlds observer optical performance - art. no. 668716
    Lo, Amy S.
    Glassman, Tiffany
    Lillie, Chuck
    UV/OPTICAL/IR SPACE TELESCOPES: INNOVATIVE TECHNOLOGIES AND CONCEPTS III, 2007, 6687 : 68716 - 68716