Radiomics Signatures Based on Multiparametric MRI for the Preoperative Prediction of the HER2 Status of Patients with Breast Cancer

被引:43
|
作者
Zhou, Jing [1 ,2 ]
Tan, Hongna [1 ,2 ]
Li, Wei [3 ]
Liu, Zehua [4 ]
Wu, Yaping [1 ,2 ]
Bai, Yan [1 ,2 ]
Fu, Fangfang [1 ,2 ]
Jia, Xin [5 ]
Feng, Aozi [6 ]
Liu, Huan [7 ]
Wang, Meiyun [1 ,2 ]
机构
[1] Zhengzhou Univ, Henan Prov & Peoples Hosp, Imaging Henan Prov Peoples Hosp & Imaging Diag Ne, Dept Med, Zhengzhou 450003, Henan, Peoples R China
[2] Zhengzhou Univ, Henan Prov & Peoples Hosp, Res Lab, Zhengzhou 450003, Henan, Peoples R China
[3] Zhengzhou Univ, Affiliated Hosp 3, Dept Clin Lab, Zhengzhou, Henan, Peoples R China
[4] Zhengzhou Univ, Sch Informat Engn, Zhengzhou, Henan, Peoples R China
[5] Nanjing Med Univ, Wuxi Peoples Hosp, Dept Radiol, Wuxi, Jiangsu, Peoples R China
[6] Jinan Univ, Affiliated Hosp 1, Guangzhou, Guangdong, Peoples R China
[7] GE Healthcare, Shanghai, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划; 中国博士后科学基金;
关键词
Breast cancer; Human epidermal growth factor receptor 2; Radiomics signature; MRI; APPARENT DIFFUSION-COEFFICIENT; PROGNOSTIC-FACTORS; CLINICAL ONCOLOGY/COLLEGE; HER-2/NEU OVEREXPRESSION; AMERICAN SOCIETY; COMPLICATION; ASSOCIATION; AMPLIFICATION; PARAMETERS; FEATURES;
D O I
10.1016/j.acra.2020.05.040
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives: The aim of our study was to preoperatively predict the human epidermal growth factor receptor 2 (HER2) status of patients with breast cancer using radiomics signatures based on single-parametric and multiparametric magnetic resonance imaging (MRI). Methods: Three hundred six patients with invasive ductal carcinoma of no special type (IDC-NST) were retrospectively enrolled. Quantitative imaging features were extracted from fat-suppressed T2-weighted and dynamic contrast-enhanced T1 weighted (DCE-T1) preoperative MRI. Then, three radiomics signatures based on fat-suppressed T2-weighted images, DCE-T1 images and their combination were developed using a support vector machine (SVM) to predict the HER2-positive vs HER2-negative status of patients with breast cancer. The area under the curve (AUC), accuracy, sensitivity, and specificity were calculated to assess the predictive performances of the signatures. Results: Twenty-eight quantitative radiomics features, namely, 14 texture features, 4 first-order features, 9 wavelet features, and 1 shape feature, were used to construct radiomics signatures. The performance of the radiomics signatures for distinguishing HER2-positive from HER2-negative breast cancer based on fat-suppressed T2-weighted images, DCE-T1 images, and their combination had an AUC of 0.74 (95% confidence interval [CI], 0.700 to 0.770), 0.71 (0.673 to 0.738), and 0.86 (0.832 to 0.882) in the primary cohort and 0.70 (0.666 to 0.744), 0.68 (0.650 to 0.726), and 0.81 (0.776 to 0.837) in the validation cohort, respectively. Conclusion: Radiomics signatures based on multiparametric MRI represent a potential and efficient alternative tool to evaluate the HER2 status in patients with breast cancer. (c) 2020 Published by Elsevier Inc. on behalf of The Association of University Radiologists.
引用
收藏
页码:1352 / 1360
页数:9
相关论文
共 50 条
  • [31] Preoperative Prediction of Ki-67 Status in Breast Cancer with Multiparametric MRI Using Transfer Learning
    Liu, Weixiao
    Cheng, Yulin
    Liu, Zaiyi
    Liu, Chunling
    Cattell, Renee
    Xie, Xinyan
    Wang, Yingyi
    Yang, Xiaojun
    Ye, Weitao
    Liang, Cuishan
    Li, Jiao
    Gao, Ying
    Huang, Chuan
    Liang, Changhong
    ACADEMIC RADIOLOGY, 2021, 28 (02) : E44 - E53
  • [32] Quantitative Parameters of Diffusion Spectrum Imaging: HER2 Status Prediction in Patients With Breast Cancer
    Mao, Chunping
    Jiang, Wei
    Huang, Jiayi
    Wang, Mengzhu
    Yan, Xu
    Yang, Zehong
    Wang, Dongye
    Zhang, Xiang
    Shen, Jun
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [33] Editorial for "Multiparametric MRI-Based Peritumoral Radiomics for Preoperative Prediction of the Presence of Extracapsular Extension With Prostate Cancer"
    Shiradkar, Rakesh
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 54 (04) : 1231 - 1232
  • [34] Multiparametric MRI Radiomics for the Identification of HER2-Low Breast Cancers Response
    Ramtohul, Toulsie
    RADIOLOGY, 2024, 310 (01) : 1 - 2
  • [35] Salivary expression of soluble HER2 in breast cancer patients with positive and negative HER2 status
    Laidi, Fatna
    Bouziane, Amal
    Lakhdar, Amina
    Khabouze, Samira
    Rhrab, Brahim
    Zaoui, Fatima
    ONCOTARGETS AND THERAPY, 2014, 7 : 1285 - 1289
  • [36] Assessment of HER2 status in breast cancer
    Penault-Llorca, F
    Cayre, A
    BULLETIN DU CANCER, 2004, 91 : S211 - S215
  • [37] HER2 status in bilateral breast cancer
    Crowe, Joseph P.
    Patrick, Rebecca J.
    Rybicki, Lisa A.
    Budd, G. Thomas
    Escobar, Pedro F.
    Tubbs, Raymond R.
    Hicks, David G.
    INTERNATIONAL JOURNAL OF FERTILITY AND WOMENS MEDICINE, 2006, 51 (05) : 219 - 223
  • [38] Evaluation of analytical accuracy of HER2 status in patients with breast cancer Comparison of HER2 GPA with HER2 IHC and HER2 FISH
    Jensen, Steffen Grann
    Thomas, Peter Engel
    Christensen, Ib Jarle
    Balslev, Eva
    Hansen, Alastair
    Hogdall, Estrid
    APMIS, 2020, 128 (11) : 573 - 582
  • [39] Development and Validation of an Ultrasound-Based Radiomics Nomogram for Identifying HER2 Status in Patients with Breast Carcinoma
    Guo, Yinghong
    Wu, Jiangfeng
    Wang, Yunlai
    Jin, Yun
    DIAGNOSTICS, 2022, 12 (12)
  • [40] Reassessment of HER2 status in breast cancer patients at the time of metastatic disease by serum HER2 and HER2 status of circulating tumor cells
    Fehm, Tania
    TUMOR BIOLOGY, 2007, 28 : 22 - 22