The Korteweg-de Vries equation on a metric star graph

被引:18
|
作者
Cavalcante, Marcio [1 ]
机构
[1] Univ Fed Alagoas, Inst Matemat, Maceio, Brazil
来源
关键词
Local well-posedness; Korteweg-de Vries equation; Metric star graph; Low regularity; BOUNDARY-VALUE-PROBLEM; NLS EQUATION; ORBITAL STABILITY; WELL-POSEDNESS; CAUCHY-PROBLEM; WAVES; MODEL;
D O I
10.1007/s00033-018-1018-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove local well-posedness for the Cauchy problem associated with Korteweg-de Vries equation on a metric star graph with three semi-infinite edges given by one negative half-line and two positive half-lines attached to a common vertex, for two classes of boundary conditions. The results are obtained in the low regularity setting by using the Duhamel boundary forcing operator, in context of half-lines, introduced by Colliander and Kenig (Commun Partial Differ Equ 27(11/12): 2187-2266, 2002), and extended by Holmer (Commun Partial Differ Equ 31:1151-1190, 2006) and Cavalcante (Differ Integral Equ 30(7/8):521-554, 2017).
引用
收藏
页数:22
相关论文
共 50 条
  • [41] SOLUTION OF A GENERALIZED KORTEWEG-DE VRIES EQUATION
    TAGARE, SG
    CHAKRABARTI, A
    PHYSICS OF FLUIDS, 1974, 17 (06) : 1331 - 1332
  • [42] The Korteweg-de Vries Equation in a Cylindrical Pipe
    Rukavishnikov, V. A.
    Tkachenko, O. P.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2008, 48 (01) : 139 - 146
  • [43] Complexiton solutions to the Korteweg-de Vries equation
    Ma, WX
    PHYSICS LETTERS A, 2002, 301 (1-2) : 35 - 44
  • [44] AN ELECTRICAL MODEL FOR THE KORTEWEG-DE VRIES EQUATION
    GIAMBO, S
    PANTANO, P
    TUCCI, P
    AMERICAN JOURNAL OF PHYSICS, 1984, 52 (03) : 238 - 243
  • [45] SOME EXTENSIONS OF KORTEWEG-DE VRIES EQUATION
    SAUT, JC
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 280 (10): : 653 - 656
  • [46] Primitive solutions of the Korteweg-de Vries equation
    Dyachenko, S. A.
    Nabelek, P.
    Zakharov, D. V.
    Zakharov, V. E.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2020, 202 (03) : 334 - 343
  • [47] Soliton fractals in the Korteweg-de Vries equation
    Zamora-Sillero, Elias
    Shapovalov, A. V.
    PHYSICAL REVIEW E, 2007, 76 (04):
  • [48] Quasiperiodic solutions of the Korteweg-de Vries equation
    Zaiko, YN
    TECHNICAL PHYSICS LETTERS, 2002, 28 (03) : 235 - 236
  • [49] Generalized inversion of the Korteweg-de Vries equation
    Muccino, JC
    Bennett, AF
    DYNAMICS OF ATMOSPHERES AND OCEANS, 2002, 35 (03) : 227 - 263
  • [50] KORTEWEG-DE VRIES-BURGERS EQUATION
    CANOSA, J
    GAZDAG, J
    JOURNAL OF COMPUTATIONAL PHYSICS, 1977, 23 (04) : 393 - 403