Non-covalent interactions between epinephrine and nitroaromatic compounds: A DFT study

被引:32
|
作者
Bandyopadhyay, Prasanta [1 ]
Karmakar, Animesh [1 ]
Deb, Jyotirmoy [2 ]
Sarkar, Utpal [2 ]
Seikh, Md. Motin [1 ]
机构
[1] Visva Bharati Univ, Dept Chem, Santini Ketan 731235, W Bengal, India
[2] Assam Univ, Dept Phys, Silchar 788011, India
关键词
Epinephrine; Hydrogen bonding; Density functional theory (DFT); Natural bond orbital (NBO); Chemical reactivity parameters; Non-covalent interaction (NCI); PI-PI STACKING; DENSITY FUNCTIONALS; SUPRAMOLECULAR COMPLEXES; EXCITED-STATES; HYDROGEN; ADRENALINE; APPROXIMATION; NITROBENZENE; RECOGNITION; PERFORMANCE;
D O I
10.1016/j.saa.2019.117827
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
Here, we present a density functional theory (DFT) study of hydrogen bonding and pi-pi stacking interactions between epinephrine and different aromatic nitro-compounds in gas phase as well as in methanol solvent. Detail investigations of hydrogen bonding and pi-pi interactions are performed and confirmed on the basis of theoretical IR spectra, natural bond orbital (NBO) analysis, non-covalent interaction (NCI), chemical reactivity descriptors and electronic spectra. Among different functionals used for the calculation, the results obtained from.B97XD functional are found to be more suitable to describe the hydrogen bonding and pi-pi stacking phenomenon for our considered systems. Weakening of hydrogen bonding and pi-pi stacking interaction on solvent incorporation is observed. Electronic transition between different orbitals and transition probabilities of epinephrine and nitro-aromatic complexes are described using time dependent density functional theory (TD-DFT) method. (c) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] NON-COVALENT INTERACTIONS IN α- AND β-IMIDAZOLE STRUCTURES
    Karasev, M. O.
    Karaseva, I. N.
    Pushkin, D. V.
    Kurbatova, S. V.
    JOURNAL OF STRUCTURAL CHEMISTRY, 2025, 66 (01) : 97 - 107
  • [32] The world of non-covalent interactions:: 2006
    Hobza, P
    Zahradník, R
    Müller-Dethlefs, K
    COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS, 2006, 71 (04) : 443 - 531
  • [33] Non-covalent interactions in clathrate complexes
    Lipkowski, Janusz
    Schneider, Hans-Joerg
    JOURNAL OF COORDINATION CHEMISTRY, 2021, 74 (13) : 2128 - 2143
  • [34] Non-covalent interactions in superatomic crystals
    Shott, Jessica
    Freeman, Matthew
    Saleh, Nemah-Allah
    Jones, Daniel
    Bejger, Christopher
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [35] Non-Covalent Interactions in Coordination Chemistry
    Kubasov, Alexey S.
    Avdeeva, Varvara V.
    INORGANICS, 2024, 12 (03)
  • [36] Non-covalent interactions in heteroaromatic molecules
    Kundu, Prantik
    Capitani, Joseph F.
    Mitra, Abhijit
    Seaton, Pamela J.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233
  • [37] Theoretical Investigation on Non-Covalent Interactions
    Novikov, Alexander S.
    CRYSTALS, 2022, 12 (02)
  • [38] The Conversation on Non-Covalent Interactions: an introduction
    Clark, Tim
    Brinck, Tore
    JOURNAL OF MOLECULAR MODELING, 2022, 28 (09)
  • [39] Metalloenzyme Mimics with Non-Covalent Interactions
    Wang Haibo
    Zhao Meng
    Ji Liangnian
    Mao Zongwan
    PROGRESS IN CHEMISTRY, 2013, 25 (04) : 577 - 588
  • [40] A benchmark for non-covalent interactions in solids
    Otero-de-la-Roza, A.
    Johnson, Erin R.
    JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (05):