Data processing in biological behavior analysis of a delayed impulsive Lotka-Volterra model with mutual interference

被引:0
|
作者
Hu, XiaoMin [1 ]
Wang, Hui [1 ]
Hu, ZhiXing [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
关键词
Lotka-Volterra Model; Delay; Periodic Solution; Coincidence Degree Theory; POSITIVE PERIODIC-SOLUTIONS; GLOBAL ATTRACTIVITY; MULTIPLE DELAYS; PERMANENCE; EXISTENCE;
D O I
10.4028/www.scientific.net/AMR.1046.396
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A delayed impulsive Lotka-Volterra model with mutual interference was established. With the help of Mawhin's Continuation Theorem in coincidence degree theory, a sufficient condition is found for the existence of positive periodic solutions of the system. A numerical simulation is given to illustrate main results.
引用
收藏
页码:396 / 402
页数:7
相关论文
共 50 条
  • [31] Fractal analysis and control of the fractional Lotka-Volterra model
    Wang, Yupin
    Liu, Shutang
    NONLINEAR DYNAMICS, 2019, 95 (02) : 1457 - 1470
  • [32] Theoretical analysis and simulations of the generalized Lotka-Volterra model
    Malcai, O
    Biham, O
    Richmond, P
    Solomon, S
    PHYSICAL REVIEW E, 2002, 66 (03):
  • [33] Asymptotic analysis and extinction in a stocrastic Lotka-Volterra model
    Klebaner, FC
    Liptser, R
    ANNALS OF APPLIED PROBABILITY, 2001, 11 (04): : 1263 - 1291
  • [34] Qualitative analysis for A Lotka-Volterra model with time delays
    Xu, Changjin
    Zhang, Qiming
    WSEAS Transactions on Mathematics, 2014, 13 (01) : 603 - 6014
  • [35] Lotka-Volterra model parameter estimation using experiential data
    Kloppers, P. H.
    Greeff, J. C.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 224 : 817 - 825
  • [36] Influence of predator mutual interference and prey refuge on Lotka-Volterra predator-prey dynamics
    Chen, Liujuan
    Chen, Fengde
    Wang, Yiqin
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (11) : 3174 - 3180
  • [37] The Numerical Analysis of the Long Time Asymptotic Behavior for Lotka-Volterra Competition Model with Diffusion
    Wang, Jue
    Liu, QinPan
    Luo, YueSheng
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2019, 40 (06) : 685 - 705
  • [38] DYNAMICS OF A DELAYED LOTKA-VOLTERRA MODEL WITH TWO PREDATORS COMPETING FOR ONE PREY
    Xu, Minzhen
    Guo, Shangjiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (10): : 5573 - 5595
  • [39] I-optimal curve for impulsive Lotka-Volterra predator-prey model
    Angelova, J
    Dishliev, A
    Nenov, S
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 43 (10-11) : 1203 - 1218
  • [40] Positive periodic solutions for a neutral impulsive delayed Lotka-Volterra competition system with the effect of toxic substance
    Xia, Yonghui
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2007, 8 (01) : 204 - 221