Pore Structure and Adsorption Characteristics of Marine and Continental Shale in China

被引:13
|
作者
Zhou, Junping [1 ,2 ]
Liu, Qili [1 ,2 ]
Tan, Jingqiang [3 ]
Jiang, Yongdong [1 ,2 ]
Xian, Xuefu [1 ,2 ]
Yin, Hong [1 ,2 ]
Ju, Yiwen [4 ]
机构
[1] Chongqing Univ, State Key Lab Coal Mine Disaster Dynam & Control, Chongqing 400044, Peoples R China
[2] Chongqing Univ, Coll Resources & Environm Sci, Chongqing 400044, Peoples R China
[3] Univ Houston, Dept Earth & Atmospher Sci, Ctr Petr Geochem, Houston, TX 77204 USA
[4] Univ Chinese Acad Sci, Coll Earth Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Shale Gas; Pore Structure; Gas Adsorption; Specific Surface Area; Continental Shale; Marine Shale; UPPER YANGTZE PLATFORM; ORGANIC-RICH; METHANE ADSORPTION; SICHUAN BASIN; SOUTH CHINA; FRACTAL CHARACTERISTICS; STORAGE CAPACITY; THERMAL MATURITY; GAS-ADSORPTION; LONGMAXI SHALE;
D O I
10.1166/jnn.2017.14526
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Typical marine shale samples from the Sichuan Basin and continental shale samples from the Ordos Basin were taken to investigate the effect of pore structure characteristics on the gas sorption of shales. Field emission scanning electron microscope (FE-SEM) and low pressure N-2 isotherm were used to characterize the pore structure. High pressure CH4 and CO2 adsorption was conducted in pressure up to 12 MPa and at temperatures of 35 degrees C, 45 degrees C, and 55 degrees C, respectively. The results indicated that the specific surface area (SSA) of the continental shale is much lower than that of the marine shale samples. The SSA of micro (pore size <2 nm) and mesopores (2 nm < pore size <50 nm) accounts for over 80% of the total SSA in marine shale, while the SSA of micropores in the continental shale is probably insignificant. And the CH4 and CO2 sorption capacities of marine shale samples are higher than that of continental shale samples. The adsorption capacity of CH4 exhibits a positive correlation with specific surface area and fractal dimension. As the temperature increases, the gas adsorption capacity and Langmuir volume decrease, but the Langmuir pressure (P-L) increases. In addition, the CO2 adsorption capacity is nearly 2-4 times higher than the CH4 adsorption capacity, indicating favorable potential of using CO2 to enhance shale gas recovery.
引用
收藏
页码:6356 / 6366
页数:11
相关论文
共 50 条
  • [31] Opportunities in Measuring Multiscale Pore Structure of the Continental Shale of the Yanchang Formation, Ordos Basin, China
    Li, Yanyan
    Zhang, Zhihong
    Wei, Siyu
    Yang, Peng
    Shang, Yanjun
    ENERGIES, 2021, 14 (17)
  • [32] Investigation of pore structure and fractal characteristics of marine-continental transitional shales from Longtan Formation using MICP, gas adsorption, and NMR (Guizhou, China)
    Ma, Xiao
    Guo, Shaobin
    Shi, Dishi
    Zhou, Zhi
    Liu, Guoheng
    MARINE AND PETROLEUM GEOLOGY, 2019, 107 : 555 - 571
  • [33] Differential impact of clay minerals and organic matter on pore structure and its fractal characteristics of marine and continental shales in China
    Chang, Jiaqi
    Fan, Xiaodong
    Jiang, Zhenxue
    Wang, Xingmeng
    Chen, Lei
    Li, Jitong
    Zhu, Lin
    Wan, Chengxiang
    Chen, Zhixiang
    APPLIED CLAY SCIENCE, 2022, 216
  • [34] Pore characterization of marine-continental transitional shale in Permian Shanxi Formation of The Southern North China Basin
    Yang, Xiaoguang
    Guo, Shaobin
    ENERGY EXPLORATION & EXPLOITATION, 2020, 38 (06) : 2199 - 2216
  • [35] FRACTAL CHARACTERISTICS AND INFLUENCING FACTORS OF PORE STRUCTURE OF MARINE ORGANIC-RICH SHALE
    Hu, Feifei
    Diao, Zongbao
    Yuan, Yuyang
    Chen, Qinglong
    Bian, Ziwei
    Lie, Teng
    Liu, Zhichen
    FRESENIUS ENVIRONMENTAL BULLETIN, 2022, 31 (6A): : 6576 - 6586
  • [36] Mineralogy and Pore Structure of Marine-Continental Transitional Shale: A Case Study of the Upper Carboniferous Keluke Formation in the Eastern Qaidam Basin, China
    Guo, Yingchun
    Fang, Xinxin
    Wang, Haifeng
    Wang, Na
    FRONTIERS IN EARTH SCIENCE, 2022, 9
  • [37] Nano-Scale Pore Structure of Marine-Continental Transitional Shale from Liulin Area, the Eastern Margin of Ordos Basin, China
    Xi, Zhaodong
    Tang, Shuheng
    Zhang, Songhang
    Li, Jun
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2017, 17 (09) : 6109 - 6123
  • [38] Adsorption Characteristics and Thermodynamic Analysis of CH4 and CO2 on Continental and Marine Shale
    Yang, Kang
    Zhou, Junping
    Xian, Xuefu
    Zhang, Chengpeng
    Tian, Shifeng
    Dong, Zhiqiang
    Fan, Maolin
    Cai, Jianchao
    TRANSPORT IN POROUS MEDIA, 2021, 140 (03) : 763 - 788
  • [39] Comparison of geochemical characteristics of marine facies, marine-continental transitional facies and continental facies shale in typical areas of China and their control over organic-rich shale
    Wang, Jiyuan
    Guo, Shaobin
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2020, 46 (01) : 12512 - 12524
  • [40] Adsorption Characteristics and Thermodynamic Analysis of CH4 and CO2 on Continental and Marine Shale
    Kang Yang
    Junping Zhou
    Xuefu Xian
    Chengpeng Zhang
    Shifeng Tian
    Zhiqiang Dong
    Maolin Fan
    Jianchao Cai
    Transport in Porous Media, 2021, 140 : 763 - 788