Circular chromatic numbers and fractional chromatic numbers of distance graphs

被引:34
|
作者
Chang, GJ
Huang, LL
Zhu, XD
机构
[1] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu 30050, Taiwan
[2] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 80424, Taiwan
关键词
D O I
10.1006/eujc.1997.0199
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies circular chromatic numbers and fractional chromatic numbers of distance graphs G(Z, D) for various distance sets D. In particular, we determine these numbers for those D sets of size two, for some special D sets of size three, for D = {1, 2,..., m, n} with 1 less than or equal to m < n, for D = {q, q + 1,..., p} with q less than or equal to p, and for D = {1, 2,..., m} - {k} with 1 less than or equal to k less than or equal to m. (C) 1998 Academic Press.
引用
收藏
页码:423 / 431
页数:9
相关论文
共 50 条
  • [21] On the set of circular total chromatic numbers of graphs
    Ghebleh, M.
    DISCRETE MATHEMATICS, 2013, 313 (05) : 693 - 697
  • [22] On chromatic numbers of nearly Kneser distance graphs
    A. V. Bobu
    A. E. Kupriyanov
    A. M. Raigorodskii
    Doklady Mathematics, 2016, 93 : 267 - 269
  • [23] On chromatic numbers of nearly Kneser distance graphs
    Bobu, A. V.
    Kupriyanov, A. E.
    Raigorodskii, A. M.
    DOKLADY MATHEMATICS, 2016, 93 (03) : 267 - 269
  • [24] ON THE CHROMATIC-NUMBERS OF SPECIAL DISTANCE GRAPHS
    VOIGT, M
    WALTHER, H
    DISCRETE MATHEMATICS, 1991, 97 (1-3) : 395 - 397
  • [25] Graphs with tiny vector chromatic numbers and huge chromatic numbers
    Feige, U
    Langberg, M
    Schechtman, G
    FOCS 2002: 43RD ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2002, : 283 - 292
  • [26] Graphs with tiny vector chromatic numbers and huge chromatic numbers
    Feige, U
    Langberg, M
    Schechtman, G
    SIAM JOURNAL ON COMPUTING, 2004, 33 (06) : 1338 - 1368
  • [27] Independence numbers and chromatic numbers of the random subgraphs of some distance graphs
    Bogolubsky, L. I.
    Gusev, A. S.
    Pyaderkin, M. M.
    Raigorodskii, A. M.
    SBORNIK MATHEMATICS, 2015, 206 (10) : 1340 - 1374
  • [28] Fractional chromatic numbers of tensor products of three graphs
    Xiao, Jimeng
    Zhang, Huajun
    Zhang, Shenggui
    DISCRETE MATHEMATICS, 2019, 342 (05) : 1310 - 1317
  • [29] Signed planar graphs with given circular chromatic numbers
    Gu, Yangyan
    Zhu, Xuding
    DISCRETE MATHEMATICS, 2022, 345 (11)
  • [30] Circular chromatic numbers of some reduced Kneser graphs
    Lih, KW
    Liu, DDF
    JOURNAL OF GRAPH THEORY, 2002, 41 (01) : 62 - 68