A Novel Method for Short-Term Wind Speed Forecasting Based on UPQPSO-LSSVM

被引:0
|
作者
Nie, Wangxue [1 ]
Fu, Jingqi [1 ]
Sun, Sizhou [1 ,2 ]
机构
[1] Shanghai Univ, Sch Mechatron Engn & Automat, 149 Yanchang Rd, Shanghai 200072, Peoples R China
[2] Anhui Polytech Univ, Sch Elect Engn, Wuhu 241000, Peoples R China
关键词
LSSVM; QPSO; UPQPSO; Wind speed forecasting; PARTICLE SWARM OPTIMIZATION;
D O I
10.1007/978-981-10-6364-0_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to improve the accuracy of the short-term wind speed forecasting, this paper presents a novel wind speed forecasting model based on least square support vector machine (LSSVM) optimized by an improved Quantum-behaved Particle Swarm Optimization algorithm called up-weightedQPSO (UPQPSO), which uses a non-linearly decreasing weight parameter to render the importance of particles in population in order to have a better balance between the global and local searching. The developed method is examined by a set of wind speeds measured at mean half an hour of two windmill farms located in Shandong province and Hebei province, simulation results indicate UPQPSO-LSSVM model yields better predictions compared with QPSO-LSSVM and ARIMA model both in prediction accuracy and computing speed.
引用
收藏
页码:32 / 42
页数:11
相关论文
共 50 条
  • [1] Short-term wind speed forecasting based on improved ant colony algorithm for LSSVM
    Yanan Li
    Peng Yang
    Huajun Wang
    Cluster Computing, 2019, 22 : 11575 - 11581
  • [2] A Short-term Wind Speed Forecasting Model Based on Improved QPSO Optimizing LSSVM
    Hu, Zhiyuan
    Liu, Qunying
    Tian, Yunxiang
    Liao, Yongfeng
    2014 INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY (POWERCON), 2014,
  • [3] Short-term wind speed forecasting based on improved ant colony algorithm for LSSVM
    Li, Yanan
    Yang, Peng
    Wang, Huajun
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 5): : 11575 - 11581
  • [4] A Hybrid Method for Short-Term Wind Speed Forecasting
    Zhang, Jinliang
    Wei, YiMing
    Tan, Zhong-fu
    Wang, Ke
    Tian, Wei
    SUSTAINABILITY, 2017, 9 (04):
  • [5] Short-term wind speed forecasting using ST-LSSVM hybrid model
    Yuan, Deyu
    Qian, Zheng
    Jing, Bo
    Pei, Yan
    2018 INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY (POWERCON), 2018, : 1661 - 1667
  • [6] Short-term wind speed forecasting based on a hybrid model that integrates PSO-LSSVM and XGBoost
    Shi, Yanhua
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2024, 19 : 1138 - 1143
  • [7] SHORT-TERM WIND POWER FORECASTING BASED ON VMD-SSA-LSSVM
    Wang W.
    Wei Y.
    Teng X.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (03): : 204 - 211
  • [8] Forecasting Short-Term Wind Speed Based on IEWT-LSSVM model Optimized by Bird Swarm Algorithm
    Xiang, Ling
    Deng, Zeqi
    Hu, Aijun
    IEEE ACCESS, 2019, 7 : 59333 - 59345
  • [9] The Short-term Forecasting of Wind Speed Based on EMD and ARMA
    Yu, Min
    Zhou, Wenmeng
    Wang, Bin
    Jin, Ji
    PROCEEDINGS OF THE 2017 12TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2017, : 495 - 498
  • [10] Short-Term Wind Speed Forecasting Based On Fuzzy Artmap
    Ul Haque, Ashraf
    Meng, Julian
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2011, 8 (01) : 65 - 80