Multi-target tracking in clutter with sequential Monte Carlo methods

被引:11
|
作者
Liu, B. [1 ,2 ]
Ji, C. [1 ]
Zhang, Y. [3 ]
Hao, C. [4 ]
Wong, K. -K. [3 ]
机构
[1] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
[2] SAMSI, Res Triangle Pk, NC 27709 USA
[3] Univ London Univ Coll, Dept Elect & Elect Engn, London WC1E 7JE, England
[4] Chinese Acad Sci, Inst Acoust, Beijing 100190, Peoples R China
来源
IET RADAR SONAR AND NAVIGATION | 2010年 / 4卷 / 05期
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
PARTICLE FILTER; ALGORITHM;
D O I
10.1049/iet-rsn.2009.0051
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For multi-target tracking (MTT) in the presence of clutters, both issues of state estimation and data association are crucial. This study tackles them jointly by Sequential Monte Carlo methods, a.k.a. particle filters. A number of novel particle algorithms are devised. The first one, which we term Monte-Carlo data association (MCDA), is a direct extension of the classical sequential importance resampling (SIR) algorithm. The second one is called maximum predictive particle filter (MPPF), in which the measurement combination with the maximum predictive likelihood is used to update the estimate of the multi-target's posterior. The third, called proportionally weighting particle filter (PWPF), weights all feasible measurement combinations according to their predictive likelihoods, and uses them proportionally in the importance sampling framework. We demonstrate the efficiency and superiority of our methods over conventional approaches through simulations.
引用
收藏
页码:662 / 672
页数:11
相关论文
共 50 条
  • [41] Improved sequential Monte Carlo filtering for ballistic target tracking
    Bruno, MGS
    Pavlov, A
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2005, 41 (03) : 1103 - 1108
  • [42] Monte Carlo methods for sensor management in target tracking
    Kreucher, Christopher M.
    Hero, Alfred O., III
    NSSPW: NONLINEAR STATISTICAL SIGNAL PROCESSING WORKSHOP: CLASSICAL, UNSCENTED AND PARTICLE FILTERING METHODS, 2006, : 232 - +
  • [43] Joint Integrated Track Splitting for Multi-sensor Multi-target Tracking in Clutter
    Xie, Yifan
    Lee, Haeho
    Ahn, Myonghwan
    Lee, Bum Jik
    Song, Taek Lyul
    ICINCO: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL 1, 2016, : 299 - 307
  • [44] Distributed tracking with sequential Monte Carlo methods for manoeuvrable sensors
    Jaward, M. H.
    Bull, D.
    Canagarajah, N.
    NSSPW: NONLINEAR STATISTICAL SIGNAL PROCESSING WORKSHOP: CLASSICAL, UNSCENTED AND PARTICLE FILTERING METHODS, 2006, : 113 - 116
  • [45] A Survey on Multi-Target Multi-Camera Tracking Methods
    Zhang P.
    Lei W.-M.
    Zhao X.-L.
    Dong L.-J.
    Lin Z.-N.
    Jing Q.-Y.
    Jisuanji Xuebao/Chinese Journal of Computers, 2024, 47 (02): : 287 - 309
  • [46] APPLICATION OF SEQUENTIAL MONTE CARLO METHODS FOR SPACE OBJECT TRACKING
    Hussein, Islam I.
    Zaidi, Waqar
    Faber, Weston
    Roscoe, Christopher W. T.
    Wilkins, Matthew P.
    Schumacher, Paul W., Jr.
    Bolden, Mark
    SPACEFLIGHT MECHANICS 2017, PTS I - IV, 2017, 160 : 1313 - 1328
  • [47] Contour tracking of contaminant clouds with sequential Monte Carlo methods
    Jaward, M. H.
    Bull, D.
    Canagarajah, N.
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 1469 - 1472
  • [48] Sequential Monte Carlo methods for contour tracking of contaminant clouds
    Jaward, M. H.
    Bull, D.
    Canagarajah, N.
    SIGNAL PROCESSING, 2010, 90 (01) : 249 - 260
  • [49] Distributed multi-target tracking in clutter for passive linear array sonar systems
    Zhang, Qian
    Xie, Yifan
    Song, Taek Lyul
    2017 20TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2017, : 479 - 486
  • [50] Tracking as a Whole: Multi-Target Tracking by Modeling Group Behavior With Sequential Detection
    Yuan, Yuan
    Lu, Yuwei
    Wang, Qi
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2017, 18 (12) : 3339 - 3349