A remark on the zhang omnibus test for normality

被引:1
|
作者
Hwang, Yi-Ting [1 ]
Wei, Peir-Feng [1 ]
机构
[1] Natl Taipei Univ, Dept Stat, Taipei 104, Taiwan
关键词
empirical distribution; Monte Carlo simulation; normality test; Q statistic;
D O I
10.1080/02664760600995064
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Zhang ( 1999) proposed a novel test statistic Q for testing normality based on the ratio of two unbiased standard deviation estimators, q1 and q2, for the true population standard deviation sigma. Mingoti & Neves ( 2003) discussed some properties of q1 and q2 and showed that the variance of q1 increases as the true population variance increases. In this paper, we show that the distribution of q1 is not normal. As a result, normality percentage points for Q are not appropriate. In this paper, percentage points of Q are obtained using simulations. Monte Carlo simulations are provided to evaluate the performance of the new method and Zhang's method.
引用
收藏
页码:177 / 184
页数:8
相关论文
共 50 条
  • [41] The combination test for multivariate normality
    Hwu, TJ
    Han, CP
    Rogers, KJ
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2002, 72 (05) : 379 - 390
  • [42] A new test for multivariate normality
    Székely, GJ
    Rizzo, ML
    JOURNAL OF MULTIVARIATE ANALYSIS, 2005, 93 (01) : 58 - 80
  • [43] A powerful test for multivariate normality
    Zhou, Ming
    Shao, Yongzhao
    JOURNAL OF APPLIED STATISTICS, 2014, 41 (02) : 351 - 363
  • [44] A CORRELATION TEST FOR BIVARIATE NORMALITY
    Coronel-Brizio, H. F.
    Hernandez-Montoya, A. R.
    Rodriguez-Achach, M. E.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2011, 24 (02) : 157 - 162
  • [45] Normality test: Is it really necessary?
    Tsagris, Michail
    Pandis, Nikolaos
    AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2021, 159 (04) : 548 - 549
  • [46] Smooth Test for Multivariate Normality
    Su, Yan
    Huang, Ya-Ping
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON AUTOMATION, MECHANICAL CONTROL AND COMPUTATIONAL ENGINEERING, 2015, 124 : 1690 - 1696
  • [47] The Rate Distortion Test of Normality
    Harremoes, Peter
    2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 241 - 245
  • [48] Using a correlation test for normality
    Fang, JJ
    Case, KE
    JOURNAL OF QUALITY TECHNOLOGY, 1996, 28 (03) : 356 - 362
  • [49] A Test for Normality in the Presence of Outliers
    Hin, Pooi Ah
    Ching, Soo Huei
    JURNAL TEKNOLOGI, 2013, 63 (02):
  • [50] Normality Test in Clinical Research
    Kwak, Sang Gyu
    Park, Sung-Hoon
    JOURNAL OF RHEUMATIC DISEASES, 2019, 26 (01): : 5 - 11