A Particle Swarm Optimization Based on Dynamic Parameter Modification

被引:5
|
作者
Zhang, Yingchao [1 ,2 ]
Xiong, Xiong [2 ]
Chen, Chao [2 ]
Huang, Xinyi [2 ]
机构
[1] NUIST, Acad Informat & Syst Sci, Nanjing 210044, Jiangsu, Peoples R China
[2] NUIST, Sch Informat & Control Engn, Nanjing 210044, Peoples R China
关键词
particle swarm optimization; dynamic parameter modification; DPSO;
D O I
10.4028/www.scientific.net/AMM.40-41.201
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A new particle swarm optimization based on dynamic parameter modification is proposed in this paper (Dynamic Parameter Modification Particle Swarm Optimizer, DPSO). In DPSO algorithm, w is doing oscillating decay breaking through the constraint of topical linear decreasing, and the Euclidean distance vertical bar p(i) - x(i)(t)vertical bar, and vertical bar p(g) - x(i)(t)vertical bar is calculated, which respectively stand for the Euclidean distances form the position X-i, of particle i to the best position P-i that the particle has passed and the best position that all the particles have passed under the time t. Parameters c(1) and c(2) of topical PSO are modified dynamically based on the comparison of vertical bar p(i) - x(i)(t)vertical bar, and vertical bar p(g) - x(i)(t)vertical bar in order to coordinate between global search and local search. Then find out the optimal value of Goldstein-Price function using topical PSO and the improved DPSO respectively, and the results demonstrate that compared to topical PSO, DPSO algorithm avoids falling into the local minimum and improves the search efficiency.
引用
收藏
页码:201 / +
页数:2
相关论文
共 50 条
  • [21] Dynamic population size based particle swarm optimization
    Sun, Shiyu
    Ye, GangQiang
    Liang, Yan
    Liu, Yong
    Pan, Quan
    [J]. ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2007, 4683 : 382 - +
  • [22] Particle Swarm Optimization Based Parameter Optimization Technique in Medical Information Hiding
    Chakraborty, Sayan
    Samanta, Sourav
    Biswas, Debalina
    Dey, Nilanjan
    Chaudhuri, Sheli Sinha
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (ICCIC), 2013, : 560 - 565
  • [23] Parameter optimization of Street-Phelps model based on Particle swarm optimization
    Zhang Bi
    Wang Jiayang
    Li Zuoyong
    [J]. 2012 2ND INTERNATIONAL CONFERENCE ON APPLIED ROBOTICS FOR THE POWER INDUSTRY (CARPI), 2012, : 493 - 494
  • [24] Parameter optimization of Steam generator feedwater controller based on particle swarm optimization
    Xiang, Rui
    Yu, Rui
    Ke, Zhiwu
    Zhang, Kelong
    [J]. ADVANCES IN ENERGY SCIENCE AND TECHNOLOGY, PTS 1-4, 2013, 291-294 : 2496 - 2499
  • [25] Parameter identification of nonlinear dynamic systems using an improved particle swarm optimization
    Zheng, Yu-xin
    Liao, Ying
    [J]. OPTIK, 2016, 127 (19): : 7865 - 7874
  • [26] Particle swarm optimization with dynamic local search for frequency modulation parameter identification
    Department of Fire Engineering, The Chinese People's Armed Police Force Academy, Langfang 065000, China
    不详
    [J]. Intl. J. Adv. Comput. Technolog., 2012, 3 (189-195):
  • [27] Parameter Estimation of an Induction Machine using a Dynamic Particle Swarm Optimization Algorithm
    Huynh, Duy C.
    Dunnigan, Matthew W.
    [J]. IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE 2010), 2010, : 1414 - 1419
  • [28] An Adaptive Particle Swarm Optimization for Engine Parameter Optimization
    Dongmei Wu
    Hao Gao
    [J]. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2018, 88 : 121 - 128
  • [29] Parameter identification of chaotic dynamic systems through an improved particle swarm optimization
    Modares, Hamidreza
    Alfi, Alireza
    Fateh, Mohammad-Mehdi
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (05) : 3714 - 3720
  • [30] An Adaptive Particle Swarm Optimization for Engine Parameter Optimization
    Wu, Dongmei
    Gao, Hao
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2018, 88 (01) : 121 - 128