A Particle Swarm Optimization Based on Dynamic Parameter Modification

被引:5
|
作者
Zhang, Yingchao [1 ,2 ]
Xiong, Xiong [2 ]
Chen, Chao [2 ]
Huang, Xinyi [2 ]
机构
[1] NUIST, Acad Informat & Syst Sci, Nanjing 210044, Jiangsu, Peoples R China
[2] NUIST, Sch Informat & Control Engn, Nanjing 210044, Peoples R China
关键词
particle swarm optimization; dynamic parameter modification; DPSO;
D O I
10.4028/www.scientific.net/AMM.40-41.201
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A new particle swarm optimization based on dynamic parameter modification is proposed in this paper (Dynamic Parameter Modification Particle Swarm Optimizer, DPSO). In DPSO algorithm, w is doing oscillating decay breaking through the constraint of topical linear decreasing, and the Euclidean distance vertical bar p(i) - x(i)(t)vertical bar, and vertical bar p(g) - x(i)(t)vertical bar is calculated, which respectively stand for the Euclidean distances form the position X-i, of particle i to the best position P-i that the particle has passed and the best position that all the particles have passed under the time t. Parameters c(1) and c(2) of topical PSO are modified dynamically based on the comparison of vertical bar p(i) - x(i)(t)vertical bar, and vertical bar p(g) - x(i)(t)vertical bar in order to coordinate between global search and local search. Then find out the optimal value of Goldstein-Price function using topical PSO and the improved DPSO respectively, and the results demonstrate that compared to topical PSO, DPSO algorithm avoids falling into the local minimum and improves the search efficiency.
引用
收藏
页码:201 / +
页数:2
相关论文
共 50 条
  • [1] Dynamic parameter tuning of particle swarm optimization
    Iwasaki, Nobuhiro
    Yasuda, Keiichiro
    Ueno, Genki
    [J]. IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2006, 1 (04) : 353 - 363
  • [2] Approximate dynamic programming based parameter optimization of particle swarm systems
    Kang, Qi
    Wang, Lei
    An, Jing
    Wu, Qi-Di
    [J]. Zidonghua Xuebao/Acta Automatica Sinica, 2010, 36 (08): : 1171 - 1181
  • [3] Particle Swarm Optimization: Dynamic Parameter Adjustment Using Swarm Activity
    Iwasaki, Nobuhiro
    Yasuda, Keiichiro
    Ueno, Genki
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6, 2008, : 2633 - 2638
  • [4] Cutting Parameter Optimization Based on particle swarm optimization
    Xi, Junmei
    Liao, Gaohua
    [J]. ICICTA: 2009 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL I, PROCEEDINGS, 2009, : 255 - 258
  • [5] Particle Swarm Optimization Based Steel Rolling Parameter Optimization
    Shi, Jiachuan
    Yin, Dong
    Yang, Guiling
    [J]. 2014 10TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2014, : 632 - 636
  • [6] Regularization Parameter Choice of based on particle swarm optimization in dynamic light scattering Inversion
    Dou, Zhenhai
    Wang, Yajing
    [J]. 2010 SECOND ETP/IITA WORLD CONGRESS IN APPLIED COMPUTING, COMPUTER SCIENCE, AND COMPUTER ENGINEERING, 2010, : 502 - 505
  • [7] A dynamic boundary based particle swarm optimization
    Li, Ying-Qiu
    Chi, Yu-Hong
    Wen, Tao
    [J]. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2013, 41 (05): : 865 - 870
  • [8] A parameter selection strategy for particle swarm optimization based on particle positions
    Zhang, Wei
    Ma, Di
    Wei, Jin-jun
    Liang, Hai-feng
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (07) : 3576 - 3584
  • [9] Parameter optimization of ant colony algorithm based on particle swarm optimization
    Dai, Yuntao
    Liu, Liqiang
    Wang, Shujuan
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE INFORMATION COMPUTING AND AUTOMATION, VOLS 1-3, 2008, : 1266 - +
  • [10] Parameter Determination of Dynamic Sensor Model with Particle Swarm Optimization Technique
    Wang, Xiaodong
    [J]. 2009 INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION, VOL I, 2009, : 43 - 46