Kahler-Ricci flow on homogeneous toric bundles

被引:0
|
作者
Huang, Hong [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
基金
北京市自然科学基金;
关键词
Kahler-Ricci flow; homogeneous toric bundles; parabolic Monge-Amp`ere equation; SOLITONS; UNIQUENESS; INVARIANT; CURVATURE; MANIFOLDS; METRICS;
D O I
10.1142/S0129167X20500226
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Assume that X is a homogeneous toric bundle of the form G(C) x (P,tau) F and is Fano, where G is a compact semisimple Lie group with complexification G(C), P a parabolic subgroup of G(C), tau : P -> (T-m)(C) is a surjective homomorphism from P to the algebraic torus (T-m)(C), and F is a compact toric manifold of complex dimension m. In this note, we show that the normalized Kahler-Ricci flow on X with a G x T-m-invariant initial Kahler form in c(1)(X) converges, modulo the algebraic torus action, to a Kahler-Ricci soliton. This extends a previous work of Zhu. As a consequence, we recover a result of Podesta-Spiro.
引用
收藏
页数:18
相关论文
共 50 条