Classification of Electronic Components Based on Convolutional Neural Network Architecture

被引:14
|
作者
Atik, Ipek [1 ]
机构
[1] Gaziantep Islam Sci & Technol Univ, Dept Elect & Elect Engn, TR-27000 Gaziantep, Turkey
关键词
deep learning; convolutional neural networks; classification; electronic components; MACHINES; ART;
D O I
10.3390/en15072347
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Electronic components are basic elements that are widely used in many industrial and technological fields. With the development of technology, their dimensions are being produced in smaller and smaller sizes. As a result, making fast distinctions becomes difficult. Being able to classify electronic components quickly and accurately will save labor and time in all areas where these elements are used. Recently, deep learning algorithms have become preferential in product classification studies due to their high accuracy and speed. In this paper, a classification study of electronic components was carried out with the deep learning method. A new convolutional neural network (CNN) model is proposed in the study. The model has six convolution layers, four pooling layers, two fully connected layers, softmax, and a classification layer. The training parameters of the network were determined as an ensemble size of 16, maximum period of 100, initial learning rate of 1 x 10(-3), and the optimizing method sgdm. While determining the CNN model layers and training parameters, the values with the highest predictive values were selected as a result of the trials. Classification research was conducted using the pre-trained networks AlexNet, ShuffleNet, SqueezeNet, and GoogleNet for the same data, and their performance success parameters were compared to those of the proposed CNN model. The proposed CNN model showed higher performance than the other methods, and an accuracy value of 98.99% was obtained.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] CT image classification based on convolutional neural network
    Zhang, Yuezhong
    Wang, Shi
    Zhao, Honghua
    Guo, Zhenhua
    Sun, Dianmin
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (14): : 8191 - 8200
  • [42] CLASSIFICATION OF CERAMIC SHARDS BASED ON CONVOLUTIONAL NEURAL NETWORK
    Chetouani, Aladine
    Debroutelle, Teddy
    Treuillet, Sylvie
    Exbrayat, Matthieu
    Jesset, Sebastien
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 1038 - 1042
  • [43] Music Classification and Identification Based on Convolutional Neural Network
    Yuan Y.
    Liu J.
    Computer-Aided Design and Applications, 2024, 21 (S18): : 205 - 221
  • [44] Vehicle Type Classification based on Convolutional Neural Network
    Chen, Yanjun
    Zhu, Wenxing
    Yao, Donghui
    Zhang, Lidong
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 1898 - 1901
  • [45] Pneumonia image classification based on convolutional neural network
    Xiong, Feng
    He, Di
    Liu, Yujie
    Qi, Meijie
    Zhang, Zhoufeng
    Liu, Lixin
    TWELFTH INTERNATIONAL CONFERENCE ON INFORMATION OPTICS AND PHOTONICS (CIOP 2021), 2021, 12057
  • [46] Convolutional Neural Network based Audio Event Classification
    Lim, Minkyu
    Lee, Donghyun
    Park, Hosung
    Kang, Yoseb
    Oh, Junseok
    Park, Jeong-Sik
    Jang, Gil-Jin
    Kim, Ji-Hwan
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2018, 12 (06): : 2748 - 2760
  • [47] Convolutional Neural Network Based Classification of App Reviews
    Aslam, Naila
    Ramay, Waheed Yousuf
    Xia, Kewen
    Sarwar, Nadeem
    IEEE ACCESS, 2020, 8 : 185619 - 185628
  • [48] Object Classification Based on Multitask Convolutional Neural Network
    Zhang Miaohui
    Zhang Bo
    Gao Chengcheng
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (23)
  • [49] Classification of Trackside Equipment Based on Convolutional Neural Network
    Li, Weidong
    Li, Jinshuang
    Liu, Yang
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 4806 - 4811
  • [50] Chinese Sentence Classification Based on Convolutional Neural Network
    Gu, Chengwei
    Wu, Ming
    Zhang, Chuang
    2017 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE APPLICATIONS AND TECHNOLOGIES (AIAAT 2017), 2017, 261