TAGA: A Transfer-based Black-box Adversarial Attack with Genetic Algorithms

被引:0
|
作者
Huang, Liang-Jung [1 ]
Yu, Tian-Li [1 ]
机构
[1] Natl Taiwan Univ, Taiwan Evolutionary Intelligence Lab, Dept Elect Engn, Taipei, Taiwan
关键词
Deep Learning; Neural Networks; Adversarial Attacks; Genetic; Algorithms;
D O I
10.1145/3512290.3528699
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Deep learning has been widely adopted in many real-world applications, especially in image classification. However, researches have shown that minor distortions imperceptible to humans may mislead classifiers. One way to improve the robustness is using adversarial attacks to obtain adversarial examples and re-training the classifier with those images. However, the connections between attacks and application scenarios are rarely discussed. This paper proposes a novel black-box adversarial attack that is specifically designed for real-world application scenarios: The transfer-based black-box adversarial attack with genetic algorithms (TAGA). TAGA adopts a genetic algorithm to generate the adversarial examples and reduces the ensuing query costs with a surrogate model based on the transferability of adversarial attacks. Empirical results show that perturbing embeddings in the latent space helps the attack algorithm quickly obtain adversarial examples and that the surrogate fitness function reduces the number of function evaluations. Compared with several state-of-the-art attacks, TAGA improves the classifiers more under the application scenario in terms of the summation of natural and defense accuracy.
引用
收藏
页码:712 / 720
页数:9
相关论文
共 50 条
  • [21] Black-Box Adversarial Attack via Overlapped Shapes
    Williams, Phoenix
    Li, Ke
    Min, Geyong
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 467 - 468
  • [22] Black-box Bayesian adversarial attack with transferable priors
    Shudong Zhang
    Haichang Gao
    Chao Shu
    Xiwen Cao
    Yunyi Zhou
    Jianping He
    Machine Learning, 2024, 113 : 1511 - 1528
  • [23] Adaptive hyperparameter optimization for black-box adversarial attack
    Guan, Zhenyu
    Zhang, Lixin
    Huang, Bohan
    Zhao, Bihe
    Bian, Song
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2023, 22 (06) : 1765 - 1779
  • [24] Black-box Universal Adversarial Attack on Text Classifiers
    Zhang, Yu
    Shao, Kun
    Yang, Junan
    Liu, Hui
    2021 2ND ASIA CONFERENCE ON COMPUTERS AND COMMUNICATIONS (ACCC 2021), 2021, : 1 - 5
  • [25] Black-Box Adversarial Attack on Time Series Classification
    Ding, Daizong
    Zhang, Mi
    Feng, Fuli
    Huang, Yuanmin
    Jiang, Erling
    Yang, Min
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 6, 2023, : 7358 - 7368
  • [26] An Optimized Black-Box Adversarial Simulator Attack Based on Meta-Learning
    Chen, Zhiyu
    Ding, Jianyu
    Wu, Fei
    Zhang, Chi
    Sun, Yiming
    Sun, Jing
    Liu, Shangdong
    Ji, Yimu
    ENTROPY, 2022, 24 (10)
  • [27] Boosting Decision-Based Black-Box Adversarial Attack with Gradient Priors
    Liu, Han
    Huang, Xingshuo
    Zhang, Xiaotong
    Li, Qimai
    Ma, Fenglong
    Wang, Wei
    Chen, Hongyang
    Yu, Hong
    Zhang, Xianchao
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 1195 - 1203
  • [28] Black-box Adversarial Attack Method Based on Evolution Strategy and Attention Mechanism
    Huang L.-F.
    Zhuang W.-Z.
    Liao Y.-X.
    Liu N.
    Ruan Jian Xue Bao/Journal of Software, 2021, 32 (11): : 3512 - 3529
  • [29] Greedy-Based Black-Box Adversarial Attack Scheme on Graph Structure
    Shao, Shushu
    Xia, Hui
    Zhang, Rui
    Cheng, Xiangguo
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, WASA 2021, PT II, 2021, 12938 : 96 - 106
  • [30] SUBSTITUTE MODEL GENERATION FOR BLACK-BOX ADVERSARIAL ATTACK BASED ON KNOWLEDGE DISTILLATION
    Cui, Weiyu
    Li, Xiaorui
    Huang, Jiawei
    Wang, Wenyi
    Wang, Shuai
    Chen, Jianwen
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 648 - 652