An Improved Faster R-CNN for High-Speed Railway Dropper Detection

被引:22
|
作者
Guo, Qifan [1 ,2 ]
Liu, Lei [1 ,2 ]
Xu, Wenjuan [1 ,2 ]
Gong, Yansheng [3 ]
Zhang, Xuewu [3 ]
Jing, Wenfeng [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Natl Engn Lab Big Data Analyt, Xian 710049, Peoples R China
[3] China Railway First Survey & Design Inst Grp Co L, Xian 710043, Peoples R China
关键词
Dropper detection; feature fusion; improved Faster R-CNN; attention mechanism; NETWORKS;
D O I
10.1109/ACCESS.2020.3000506
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Overhead contact systems (OCSs) are the power supply facility of high-speed trains and plays a vital role in the operation of high-speed trains. The dropper is an important guarantee for the suspension system of the OCS. Faults of the dropper, such as slack and breakage, can cause a certain threat to the power supply system. How to use artificial intelligence technologies to detect faults is an urgent technical problem to be solved. Because droppers are very small in whole images, a feasible solution to the problem is to identify and locate the droppers first, then segment them, and then identify the fault type of the segmented droppers. This paper proposes an improved Faster R-CNN algorithm that can accurately identify and locate droppers. The innovations of the method consist of two parts. First, a balanced attention feature pyramid network (BA-FPN) is used to predict the detection anchor. Based on the attention mechanism, BA-FPN performs feature fusion on feature maps of different levels of the feature pyramid network to balance the original features of each layer. After that, a center-point rectangle loss (CR Loss) is designed as the bounding box regression loss function of Faster R-CNN. Through a center-point rectangle penalty term, the anchor box quickly moves closer to the ground-truth box during the training process. We validate the improved Faster R-CNN through extensive experiments on the VOC 2012 and MSCOCO 2014 datasets. Experimental results prove the effectiveness of the proposed network combined with attention feature fusion and center-point rectangle loss. On the OCS dataset, the accuracy using the combination of the improved Faster R-CNN and ResNet-101 reached 86.8% mAP@0.5 and 83.9% mAP@0.7, which was the best performance among all results.
引用
收藏
页码:105622 / 105633
页数:12
相关论文
共 50 条
  • [21] Face Detection with the Faster R-CNN
    Jiang, Huaizu
    Learned-Miller, Erik
    2017 12TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG 2017), 2017, : 650 - 657
  • [22] An optimized railway fastener detection method based on modified Faster R-CNN
    Bai, Tangbo
    Yang, Jianwei
    Xu, Guiyang
    Yao, Dechen
    MEASUREMENT, 2021, 182
  • [23] An Improved Mask R-CNN Algorithm for High Object Detection Speed and Accuracy
    Liu, Qingchuan
    Ayub, Muhammad Azmi
    Ruslan, Fazlina Ahmat
    Ab Patar, Mohd Nor Azmi
    Abdul-Rahman, Shuzlina
    SOFT COMPUTING IN DATA SCIENCE, SCDS 2023, 2023, 1771 : 107 - 118
  • [24] Improved Traffic Sign Detection Algorithm Based on Faster R-CNN
    Gao, Xiang
    Chen, Long
    Wang, Kuan
    Xiong, Xiaoxia
    Wang, Hai
    Li, Yicheng
    APPLIED SCIENCES-BASEL, 2022, 12 (18):
  • [25] Detection of Safety Helmet Wearing Based on Improved Faster R-CNN
    Chen, Songbo
    Wang, Wenbo
    Ouyang, Ye
    Zhu, Huiling
    Ji, Tianyao
    Tang, Wenhu
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [26] Improved Faster R-CNN for Multi-Scale Object Detection
    Li X.
    Fu C.
    Li X.
    Wang Z.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2019, 31 (07): : 1095 - 1101
  • [27] Rice Panicle Detection Method Based on Improved Faster R-CNN
    Zhang Y.
    Xiao D.
    Chen H.
    Liu Y.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2021, 52 (08): : 231 - 240
  • [28] Traffic sign detection algorithm based on improved Faster R-CNN
    Li Zhe
    Zhang Hui-hui
    Deng Jun-yong
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2021, 36 (03) : 484 - 492
  • [29] Ship Target Detection Algorithm Based on Improved Faster R-CNN
    Qi, Liang
    Li, Bangyu
    Chen, Liankai
    Wang, Wei
    Dong, Liang
    Jia, Xuan
    Huang, Jing
    Ge, Chengwei
    Xue, Ganmin
    Wang, Dong
    ELECTRONICS, 2019, 8 (09)
  • [30] Textile Fabric Defect Detection Based on Improved Faster R-CNN
    He, Dongfang
    Wen, Jiajun
    Lai, Zhihui
    AATCC JOURNAL OF RESEARCH, 2021, 8 (1_SUPPL) : 83 - 91