The flow map of the Fokker-Planck equation does not provide optimal transport

被引:3
|
作者
Lavenant, Hugo [1 ,2 ]
Santambrogio, Filippo [3 ]
机构
[1] Bocconi Univ, Dept Decis Sci, I-20136 Milan, Italy
[2] Bocconi Univ, BIDSA, I-20136 Milan, Italy
[3] Univ Claude Bernard Lyon 1, Inst Camille Jordan, F-69622 Villeurbanne, France
关键词
Optimal transport; Fokker-Planck equation; Asymptotic behavior of solutions to  PDEs;
D O I
10.1016/j.aml.2022.108225
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In Khrulkov and Oseledets (2022) the authors conjecture that, by integrating the flow of the ODE given by the Wasserstein velocity in a Fokker-Planck equation, one obtains an optimal transport map. On the other hand this result was thought to be false in Kim and Milman (2012) but no proof was provided. In this note we show that the result claimed by Khrulkov and Oseledets cannot hold. This strengthens a counterexample which was built in Tanana (2021). (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] The differential equation of Fokker-Planck
    Bernstein, S
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1933, 196 : 1062 - 1064
  • [12] Dynamics of the Fokker-Planck equation
    Jordan, R
    Kinderlehrer, D
    Otto, F
    PHASE TRANSITIONS, 1999, 69 (03) : 271 - 288
  • [13] Parametric Fokker-Planck Equation
    Li, Wuchen
    Liu, Shu
    Zha, Hongyuan
    Zhou, Haomin
    GEOMETRIC SCIENCE OF INFORMATION, 2019, 11712 : 715 - 724
  • [14] A SOLUTION OF A FOKKER-PLANCK EQUATION
    ENGLEFIELD, MJ
    PHYSICA A, 1990, 167 (03): : 877 - 886
  • [15] THE THERMALIZED FOKKER-PLANCK EQUATION
    FRISCH, HL
    NOWAKOWSKI, B
    JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (11): : 8963 - 8969
  • [16] Computation of Fokker-Planck equation
    Yau, SST
    QUARTERLY OF APPLIED MATHEMATICS, 2004, 62 (04) : 643 - 650
  • [17] On Derivation of Fokker-Planck Equation
    Tanatarov, L. V.
    METALLOFIZIKA I NOVEISHIE TEKHNOLOGII, 2013, 35 (01): : 95 - 111
  • [18] EXTENSION OF FOKKER-PLANCK EQUATION
    PRICE, JC
    PHYSICS OF FLUIDS, 1966, 9 (12) : 2408 - &
  • [19] QUANTUM FOKKER-PLANCK EQUATION
    CHANG, LD
    WAXMAN, D
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (31): : 5873 - 5879
  • [20] PROPERTIES OF FOKKER-PLANCK EQUATION
    LIBOFF, RL
    FEDELE, JB
    PHYSICS OF FLUIDS, 1967, 10 (07) : 1391 - +