The flow map of the Fokker-Planck equation does not provide optimal transport

被引:3
|
作者
Lavenant, Hugo [1 ,2 ]
Santambrogio, Filippo [3 ]
机构
[1] Bocconi Univ, Dept Decis Sci, I-20136 Milan, Italy
[2] Bocconi Univ, BIDSA, I-20136 Milan, Italy
[3] Univ Claude Bernard Lyon 1, Inst Camille Jordan, F-69622 Villeurbanne, France
关键词
Optimal transport; Fokker-Planck equation; Asymptotic behavior of solutions to  PDEs;
D O I
10.1016/j.aml.2022.108225
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In Khrulkov and Oseledets (2022) the authors conjecture that, by integrating the flow of the ODE given by the Wasserstein velocity in a Fokker-Planck equation, one obtains an optimal transport map. On the other hand this result was thought to be false in Kim and Milman (2012) but no proof was provided. In this note we show that the result claimed by Khrulkov and Oseledets cannot hold. This strengthens a counterexample which was built in Tanana (2021). (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Bilinear Optimal Control of the Fokker-Planck Equation
    Fleig, Arthur
    Guglielmi, Roberto
    IFAC PAPERSONLINE, 2016, 49 (08): : 254 - 259
  • [2] On the solution of Fokker-Planck equation for electron transport
    El-Wakil, SA
    Abdou, MA
    Elhanbaly, A
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2002, 75 (04): : 517 - 527
  • [3] FOKKER-PLANCK EQUATION
    DESLOGE, EA
    AMERICAN JOURNAL OF PHYSICS, 1963, 31 (04) : 237 - &
  • [4] Probability flow solution of the Fokker-Planck equation
    Boffi, Nicholas M.
    Vanden-Eijnden, Eric
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (03):
  • [5] A monotonic algorithm for the optimal control of the Fokker-Planck equation
    Carlier, Guillaume
    Salomon, Julien
    47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 269 - 273
  • [6] Transport in the spatially tempered, fractional Fokker-Planck equation
    Kullberg, A.
    del-Castillo-Negrete, D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (25)
  • [7] Fokker-Planck equation and subdiffusive fractional Fokker-Planck equation of bistable systems with sinks
    Chow, CW
    Liu, KL
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 341 : 87 - 106
  • [8] On symmetries of the Fokker-Planck equation
    Kozlov, Roman
    JOURNAL OF ENGINEERING MATHEMATICS, 2013, 82 (01) : 39 - 57
  • [9] PROPERTIES OF FOKKER-PLANCK EQUATION
    LEWIS, MB
    HOGAN, JT
    PHYSICS OF FLUIDS, 1968, 11 (04) : 761 - &
  • [10] Fractional Fokker-Planck equation
    El-Wakil, SA
    Zahran, MA
    CHAOS SOLITONS & FRACTALS, 2000, 11 (05) : 791 - 798