共 50 条
Bacterial community structure and bamA gene diversity in anaerobic degradation of toluene and benzoate under denitrifying conditions
被引:19
|作者:
Li, Y. -N.
[1
,2
]
Porter, A. W.
[1
]
Mumford, A.
[1
]
Zhao, X. -H.
[2
]
Young, L. Y.
[1
]
机构:
[1] Rutgers State Univ, Dept Environm Sci, Sch Environm & Biol Sci, New Brunswick, NJ 08901 USA
[2] Tianjin Univ, Sch Environm Sci & Technol, Tianjin 300072, Peoples R China
关键词:
bamA gene;
benzoate;
DGGE;
nitrate-reducing bacteria;
toluene;
GRADIENT GEL-ELECTROPHORESIS;
AROMATIC-COMPOUNDS;
GEOBACTER-METALLIREDUCENS;
SYNTROPHUS-ACIDITROPHICUS;
IDENTIFICATION;
AZOARCUS;
CATABOLISM;
PATHWAY;
BIODEGRADATION;
POPULATIONS;
D O I:
10.1111/j.1365-2672.2011.05213.x
中图分类号:
Q81 [生物工程学(生物技术)];
Q93 [微生物学];
学科分类号:
071005 ;
0836 ;
090102 ;
100705 ;
摘要:
Aim: To characterize the microbial community structure and bamA gene diversity involved in anaerobic degradation of toluene and benzoate under denitrifying conditions. Methods and Results: Nitrate-reducing enrichment cultures were established on either toluene, benzoate or without additional substrate. Bacterial community structures were characterized by 16S rRNA gene-based PCR-DGGE analysis. bamA gene diversity was analysed using DGGE and cloning methods. The results showed that bamA gene related to bamA of Thauera chlorobenzoica was dominant in toluene and benzoate cultures. However, a greater diversity of sequences was obtained in benzoate cultures. Low diversity of bamA gene was observed, and some similarities of bamA were also found between active cultures and backgrounds, suggesting that potential natural attenuation of aromatic compounds might occur. Conclusions: The combined analysis of 16S rRNA and bamA genes suggests that the species related to genera Thauera dominated toluene-and benzoatedegrading cultures. The combination of multiple methods (DGGE and cloning) provides a more complete picture of bamA gene diversity. Significance and Impact of the Study: To our knowledge, this is the first report of bamA gene in denitrifying enrichments using DGGE and cloning analysis.
引用
收藏
页码:269 / 279
页数:11
相关论文