A preliminary investigation of Luojia-1 night-time light imagery

被引:93
|
作者
Li, Xi [1 ]
Li, Xiya [1 ]
Li, Deren [1 ]
He, Xiaojun [2 ]
Jendryke, Michael [1 ,3 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan, Hubei, Peoples R China
[2] Chang Guang Satellite Technol Co Ltd, Changchun, Jilin, Peoples R China
[3] Wuhan Univ, Sch Resource & Environm Sci, Wuhan, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1080/2150704X.2019.1577573
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Launched on 2 June 2018, Luojia-1 satellite records night-time light imagery at 130 m resolution, which is higher than most of the existing night-time light images to date. This study evaluated radiometric and spatial properties of the Luojia-1 satellite imagery for cities of Los Angeles, Wuhan and Rome as well as the change detection capability for Zunyi city. For the radiometric property, the analysis shows that the Luojia-1 images correlate well with the radiance of the Visible Infrared Imaging Radiometer Suite (VIIRS)'s Day and Night Band (DNB), and that the Luojia-1 images have a wider range of radiance values, as well as higher radiance values (e.g., 40%-90% higher) than the VIIRS DNB images. Using wavelet decomposition and change detection analysis to evaluate spatial property and change detection capability, it was found that the Luojia-1 images provide abundant spatial detail information, with about 20%-54% energy of wavelet component of the images stored in 100-400 m resolutions, and they can help to track the electrification of new roads and buildings at a fine resolution. This study shows that the Luojia-1 images are an effective data source for analysing spatiotemporal distribution of night-time light and its associated socioeconomic attributes.
引用
收藏
页码:526 / 535
页数:10
相关论文
共 50 条
  • [21] DMSP/OLS night-time light imagery for urban population estimates in the Brazilian Amazon
    Amaral, S
    Monteiro, AMV
    Camara, G
    Quintanilha, JA
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2006, 27 (5-6) : 855 - 870
  • [22] Identifying China's polycentric cities and evaluating the urban centre development level using Luojia-1A night-time light data
    Yang, Zhiwei
    Chen, Yingbiao
    Zheng, Zihao
    Wu, Zhifeng
    [J]. ANNALS OF GIS, 2022, 28 (02) : 185 - 195
  • [23] NIGHT-TIME OBSERVATIONS OF SNOW USING VISIBLE IMAGERY
    FOSTER, JL
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 1983, 4 (04) : 785 - 791
  • [24] Fast natural color mapping for night-time imagery
    Hogervorst, Maarten A.
    Toet, Alexander
    [J]. INFORMATION FUSION, 2010, 11 (02) : 69 - 77
  • [25] Artificial light at night: a global disruptor of the night-time environment
    Bara, Salvador
    Falchi, Fabio
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2023, 378 (1892)
  • [26] Mapping population distribution by integrating night-time light satellite imagery and land-cover data
    Liu, Xianfeng
    Zhu, Xiufang
    Pan, Yaozhong
    Ma, Yuqi
    Li, Tianqi
    Chen, Shuchen
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 2186 - 2189
  • [27] Poverty assessment using DMSP/OLS night-time light satellite imagery at a provincial scale in China
    Wang, Wen
    Cheng, Hui
    Zhang, Li
    [J]. ADVANCES IN SPACE RESEARCH, 2012, 49 (08) : 1253 - 1264
  • [28] A Thermodynamic Geography: Night-Time Satellite Imagery as a Proxy Measure of Emergy
    Luca Coscieme
    Federico M. Pulselli
    Simone Bastianoni
    Christopher D. Elvidge
    Sharolyn Anderson
    Paul C. Sutton
    [J]. AMBIO, 2014, 43 : 969 - 979
  • [29] A Thermodynamic Geography: Night-Time Satellite Imagery as a Proxy Measure of Emergy
    Coscieme, Luca
    Pulselli, Federico M.
    Bastianoni, Simone
    Elvidge, Christopher D.
    Anderson, Sharolyn
    Sutton, Paul C.
    [J]. AMBIO, 2014, 43 (07) : 969 - 979
  • [30] A new source of multi-spectral high spatial resolution night-time light imagery-JL1-3B
    Zheng, Qiming
    Weng, Qihao
    Huang, Lingyan
    Wang, Ke
    Deng, Jinsong
    Jiang, Ruowei
    Ye, Ziran
    Gan, Muye
    [J]. REMOTE SENSING OF ENVIRONMENT, 2018, 215 : 300 - 312