Multi-source domain adaptation with joint learning for cross-domain sentiment classification

被引:35
|
作者
Zhao, Chuanjun [1 ]
Wang, Suge [2 ,3 ]
Li, Deyu [2 ,3 ]
机构
[1] Shanxi Univ Finance & Econ, Sch Informat, Taiyuan 030006, Shanxi, Peoples R China
[2] Shanxi Univ, Sch Comp & Informat Technol, Taiyuan 030006, Shanxi, Peoples R China
[3] Minist Educ, Key Lab Computat Intelligence & Chinese Informat, Taiyuan 030006, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Domain adaptation; Soft parameter sharing; Deep domain confusion; Cross-domain sentiment classification;
D O I
10.1016/j.knosys.2019.105254
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cross domain sentiment classification uses knowledge from source domain tasks to enhance the sentiment classification of the target task. It can reduce the workload of data annotations in the new domain, and significantly improve the utilization of labeled resources in the source domains. Available approaches generally use knowledge from a single-source domain and hard parameter sharing methods, which are likely to ignore the differences among domain-specific features. We propose a novel framework with multi-source domain adaptation and joint learning for multi-source cross-domain sentiment classification tasks This framework uses bi-directional gated recurrent units and convolutional neural networks for deep feature extraction and soft parameter sharing for information transfer across tasks. Furthermore, it minimizes distance constraints for deep domain fusion. Multi-source domain adaptation involves multiple concurrent task learning, and the gradients are simultaneously back propagated. We validate the proposed framework on multi-source cross-domain sentiment classification datasets in Chinese and English. The experimental results demonstrate that the proposed method is more effective than state-of-the-art methods in improving accuracy and generalization capability. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Heterogeneous Online Multi-Source Transfer Learning with Cross-Domain Structure Preserving Projection
    Jiang X.-L.
    Wu Y.-B.
    Chen M.
    Qu X.-M.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2023, 51 (08): : 1983 - 1994
  • [42] CROSS-DOMAIN SENTIMENT CLASSIFICATION WITH CONTRASTIVE LEARNING AND MUTUAL INFORMATION MAXIMIZATION
    Li, Tian
    Chen, Xiang
    Zhang, Shanghang
    Dong, Zhen
    Keutzer, Kurt
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 8203 - 8207
  • [43] Adaptive Semi-supervised Learning for Cross-domain Sentiment Classification
    He, Ruidan
    Lee, Wee Sun
    Ng, Hwee Tou
    Dahlmeier, Daniel
    2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 3467 - 3476
  • [44] SentATN: learning sentence transferable embeddings for cross-domain sentiment classification
    Kuai Dai
    Xutao Li
    Xu Huang
    Yunming Ye
    Applied Intelligence, 2022, 52 : 18101 - 18114
  • [45] Deep Transfer Learning for Social Media Cross-Domain Sentiment Classification
    Zhao, Chuanjun
    Wang, Suge
    Li, Deyu
    SOCIAL MEDIA PROCESSING, SMP 2017, 2017, 774 : 232 - 243
  • [46] SentATN: learning sentence transferable embeddings for cross-domain sentiment classification
    Dai, Kuai
    Li, Xutao
    Huang, Xu
    Ye, Yunming
    APPLIED INTELLIGENCE, 2022, 52 (15) : 18101 - 18114
  • [47] Cross-Domain Sentiment Classification Using Sentiment Sensitive Embeddings
    Bollegala, Danushka
    Mu, Tingting
    Goulermas, John Yannis
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2016, 28 (02) : 398 - 410
  • [48] Cross-Domain Extreme Learning Machines for Domain Adaptation
    Li, Shuang
    Song, Shiji
    Huang, Gao
    Wu, Cheng
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (06): : 1194 - 1207
  • [49] Learning Cross-Domain Landmarks for Heterogeneous Domain Adaptation
    Tsai, Yao-Hung Hubert
    Yeh, Yi-Ren
    Wang, Yu-Chiang Frank
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 5081 - 5090
  • [50] Cross-Domain Contrastive Learning for Unsupervised Domain Adaptation
    Wang, Rui
    Wu, Zuxuan
    Weng, Zejia
    Chen, Jingjing
    Qi, Guo-Jun
    Jiang, Yu-Gang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 1665 - 1673