Estimation of the proportion of overweight individuals in small areas - a robust extension of the Fay-Herriot model

被引:10
|
作者
Xie, Dawei
Raghunathan, Trivellore E.
Lepkowski, James M.
机构
[1] Univ Penn, Sch Med, Dept Biostat & Epidemiol, Ctr Clin Epidemiol & Biostat, Philadelphia, PA 19104 USA
[2] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Inst Social Res, Ann Arbor, MI 48109 USA
关键词
t distribution; hierarchical model; complex sample survey; BRFSS; overweight; outlier detection;
D O I
10.1002/sim.2709
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hierarchical model Such as Fay-Herriot (FH) model is often used in small area estimation. The method might perform well overall but is vulnerable to outliers. We propose a robust extension of the FH model by assuming the area random effects follow a t distribution with an unknown degrees-of-freedom parameter. The inferences are constructed using a Bayesian framework. Monte Carlo Markov Chain (MCMC) such as Gibbs sampling and Metropolis-Hastings acceptance and rejection algorithms are used to obtain the joint posterior distribution of model parameters. The procedure is used to estimate the county-level proportion of overweight individuals from the 2003 public-use Behavioral Risk Factor Surveillance System (BRFSS) data. We also discuss two approaches for identifying outliers in the context of this application. Copyright (c) 2006 John Wiley & Sons, Ltd.
引用
收藏
页码:2699 / 2715
页数:17
相关论文
共 50 条
  • [1] Parametric transformed Fay-Herriot model for small area estimation
    Sugasawa, Shonosuke
    Kubokawa, Tatsuya
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 139 : 295 - 311
  • [2] Multivariate Fay-Herriot models for small area estimation
    Benavent, Roberto
    Morales, Domingo
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 94 : 372 - 390
  • [3] Robust estimation of mean squared error matrix of small area estimators in a multivariate Fay-Herriot model
    Ito, Tsubasa
    Kubokawa, Tatsuya
    [J]. JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2020, 3 (01) : 39 - 61
  • [4] Small area estimation under a measurement error bivariate Fay-Herriot model
    Burgard, Jan Pablo
    Esteban, Maria Dolores
    Morales, Domingo
    Perez, Agustin
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2021, 30 (01): : 79 - 108
  • [5] A resampling approach to estimation of the linking variance in the Fay-Herriot model
    Chatterjee, Snigdhansu
    [J]. STATISTICAL THEORY AND RELATED FIELDS, 2019, 3 (02) : 170 - 177
  • [6] Three-fold Fay-Herriot model for small area estimation and its diagnostics
    Marcis, Laura
    Morales, Domingo
    Pagliarella, Maria Chiara
    Salvatore, Renato
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2023, 32 (05): : 1563 - 1609
  • [7] The best EBLUP in the Fay-Herriot model
    Jiang, Jiming
    Tang, En-Tzu
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2011, 63 (06) : 1123 - 1140
  • [8] Accurate Confidence Interval Estimation of Small Area Parameters Under the Fay-Herriot Model
    Diao, Lixia
    Smith, David D.
    Datta, Gauri Sankar
    Maiti, Tapabrata
    Opsomer, Jean D.
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2014, 41 (02) : 497 - 515
  • [9] Small area estimation with spatio-temporal Fay-Herriot models
    Marhuenda, Yolanda
    Molina, Isabel
    Morales, Domingo
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 58 : 308 - 325
  • [10] Spatial Fay-Herriot models for small area estimation with functional covariates
    Porter, Aaron T.
    Holan, Scott H.
    Wikle, Christopher K.
    Cressie, Noel
    [J]. SPATIAL STATISTICS, 2014, 10 : 27 - 42