Accurate Confidence Interval Estimation of Small Area Parameters Under the Fay-Herriot Model

被引:10
|
作者
Diao, Lixia [1 ]
Smith, David D. [2 ]
Datta, Gauri Sankar [3 ]
Maiti, Tapabrata [4 ]
Opsomer, Jean D. [5 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Houston, TX USA
[2] Tennessee Technol Univ, Dept Math, Cookeville, TN 38505 USA
[3] Univ Georgia, Dept Stat, Athens, GA 30602 USA
[4] Michigan State Univ, Dept Stat, E Lansing, MI 48824 USA
[5] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA
基金
美国国家科学基金会;
关键词
calibration; Fay-Herriot model; confidence intervals; estimated best linear unbiased predictor; small area estimation; MEAN SQUARED ERROR; PREDICTION;
D O I
10.1111/sjos.12045
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Small area estimation has long been a popular and important research topic due to its growing demand in public and private sectors. We consider here the basic area level model, popularly known as the Fay-Herriot model. Although much of current research is predominantly focused on second order unbiased estimation of mean squared prediction errors, we concentrate on developing confidence intervals (CIs) for the small area means that are second order correct. The corrected CI can be readily implemented, because it only requires quantities that are already estimated as part of the mean squared error estimation. We extend the approach to a CI for the difference of two small area means. The findings are illustrated with a simulation study.
引用
收藏
页码:497 / 515
页数:19
相关论文
共 50 条
  • [1] Area Specific Confidence Intervals for a Small Area Mean under the Fay-Herriot Model
    Shiferaw, Yegnanew A.
    Galpin, Jacqueline S.
    [J]. JIRSS-JOURNAL OF THE IRANIAN STATISTICAL SOCIETY, 2016, 15 (02): : 1 - 43
  • [2] Small area estimation under a measurement error bivariate Fay-Herriot model
    Burgard, Jan Pablo
    Esteban, Maria Dolores
    Morales, Domingo
    Perez, Agustin
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2021, 30 (01): : 79 - 108
  • [3] Parametric transformed Fay-Herriot model for small area estimation
    Sugasawa, Shonosuke
    Kubokawa, Tatsuya
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 139 : 295 - 311
  • [4] Multivariate Fay-Herriot models for small area estimation
    Benavent, Roberto
    Morales, Domingo
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 94 : 372 - 390
  • [5] Small area estimation under a Fay-Herriot model with preliminary testing for the presence of random area effects
    Molina, Isabel
    Rao, J. N. K.
    Datta, Gauri Sankar
    [J]. SURVEY METHODOLOGY, 2015, 41 (01) : 1 - 19
  • [6] Hierarchical Bayes estimation of small area means under a spatial nonstationary Fay-Herriot model
    Anjoy, Priyanka
    Chandra, Hukum
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (07) : 3043 - 3061
  • [7] Small area estimation under Fay-Herriot models with non-parametric estimation of heteroscedasticity
    Gonzalez-Manteiga, W.
    Lombardia, M. J.
    Molina, I.
    Morales, D.
    Santamaria, L.
    [J]. STATISTICAL MODELLING, 2010, 10 (02) : 215 - 239
  • [8] Three-fold Fay-Herriot model for small area estimation and its diagnostics
    Marcis, Laura
    Morales, Domingo
    Pagliarella, Maria Chiara
    Salvatore, Renato
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2023, 32 (05): : 1563 - 1609
  • [9] Small area estimation with spatio-temporal Fay-Herriot models
    Marhuenda, Yolanda
    Molina, Isabel
    Morales, Domingo
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 58 : 308 - 325
  • [10] Spatial Fay-Herriot models for small area estimation with functional covariates
    Porter, Aaron T.
    Holan, Scott H.
    Wikle, Christopher K.
    Cressie, Noel
    [J]. SPATIAL STATISTICS, 2014, 10 : 27 - 42