Pathwise definition of second-order SDEs

被引:2
|
作者
Quer-Sardanyons, Lluis [1 ]
Tindel, Samy [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, Fac Ciencias, Bellaterra 08193, Spain
[2] Inst Elie Cartan Nancy, F-54506 Vandoeuvre Les Nancy, France
关键词
Elliptic SPDEs; Young integration; Fractional Brownian motion; Malliavin calculus; FRACTIONAL BROWNIAN-MOTION; STOCHASTIC DIFFERENTIAL-EQUATIONS; EVOLUTION-EQUATIONS; DRIVEN; INTEGRATION; CALCULUS;
D O I
10.1016/j.spa.2011.08.014
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, a class of second-order differential equations on [0, 1], driven by a gamma-Holder continuous function for any value of gamma is an element of (0, 1) and with multiplicative noise, is considered. We first show how to solve this equation in a pathwise manner, thanks to Young integration techniques. We then study the differentiability of the solution with respect to the driving process and consider the case where the equation is driven by a fractional Brownian motion, with two aims in mind: show that the solution that we have produced coincides with the one which would be obtained with Malliavin calculus tools, and prove that the law of the solution is absolutely continuous with respect to the Lebesgue measure. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:466 / 497
页数:32
相关论文
共 50 条
  • [41] Pathwise differentiability for SDEs in a convex polyhedron with oblique reflection
    Andres, Sebastian
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (01): : 104 - 116
  • [42] ON SECOND-ORDER WAVEFUNCTIONS
    ROBERTS, EM
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1965, 43 (04): : 1431 - &
  • [43] On Second-Order Morality
    Pavlakos, George
    [J]. JURISPRUDENCE-AN INTERNATIONAL JOURNAL OF LEGAL AND POLITICAL THOUGHT, 2015, 6 (02): : 276 - 297
  • [44] ON SECOND-ORDER RECURRENCES
    WYLER, O
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (05): : 500 - +
  • [45] Second-order generalization
    Neville, RS
    [J]. 2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 949 - 954
  • [46] Second-order diversity
    Gerken, HK
    [J]. HARVARD LAW REVIEW, 2005, 118 (04) : 1099 - 1196
  • [47] On second-order characterizability
    Hyttinen, Tapani
    Kangas, Kaisa
    Vaananen, Jouko
    [J]. LOGIC JOURNAL OF THE IGPL, 2013, 21 (05) : 767 - 787
  • [48] SECOND-ORDER FACTORS
    Thurstone, L. L.
    [J]. PSYCHOMETRIKA, 1944, 9 (02) : 71 - 100
  • [49] Second-order Lagrangians admitting a second-order Hamilton-Cartan formalism
    Díaz, RD
    Masqué, JM
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (34): : 6003 - 6016
  • [50] Second-Order Optimality Conditions for Multiobjective Optimization Whose Order Induced by Second-Order Cone
    Zhang, Li-Wei
    Zhang, Ji-Hong
    Zhang, Yu-Le
    [J]. JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2018, 6 (02) : 267 - 288