Intelligent GPGPU Classification in Volume Visualization: A framework based on Error-Correcting Output Codes

被引:3
|
作者
Escalera, S. [1 ,2 ]
Puig, A. [1 ]
Amoros, O. [1 ]
Salamo, M. [1 ]
机构
[1] Univ Barcelona, Dept Matemat Aplicada & Anal, E-08007 Barcelona, Spain
[2] Univ Autonoma Barcelona, Ctr Visio Comp, Barcelona, Spain
关键词
Classification (of information) - Errors - Learning systems - Visualization - Adaptive boosting - Program processors - Rendering (computer graphics) - Iterative methods;
D O I
10.1111/j.1467-8659.2011.02043.x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In volume visualization, the definition of the regions of interest is inherently an iterative trial-and-error process finding out the best parameters to classify and render the final image. Generally, the user requires a lot of expertise to analyze and edit these parameters through multi-dimensional transfer functions. In this paper, we present a framework of intelligent methods to label on-demand multiple regions of interest. These methods can be split into a two-level GPU-based labelling algorithm that computes in time of rendering a set of labelled structures using the Machine Learning Error-Correcting Output Codes (ECOC) framework. In a pre-processing step, ECOC trains a set of Adaboost binary classifiers from a reduced pre-labelled data set. Then, at the testing stage, each classifier is independently applied on the features of a set of unlabelled samples and combined to perform multi-class labelling. We also propose an alternative representation of these classifiers that allows to highly parallelize the testing stage. To exploit that parallelism we implemented the testing stage in GPU-OpenCL. The empirical results on different data sets for several volume structures shows high computational performance and classification accuracy.
引用
收藏
页码:2107 / 2115
页数:9
相关论文
共 50 条
  • [1] Error-Correcting Output Codes in the Framework of Deep Ordinal Classification
    Barbero-Gomez, Javier
    Antonio Gutierrez, Pedro
    Hervas-Martinez, Cesar
    [J]. NEURAL PROCESSING LETTERS, 2022,
  • [2] Error-Correcting Output Codes in the Framework of Deep Ordinal Classification
    Barbero-Gomez, Javier
    Gutierrez, Pedro Antonio
    Hervas-Martinez, Cesar
    [J]. NEURAL PROCESSING LETTERS, 2023, 55 (05) : 5299 - 5330
  • [3] Error-Correcting Output Codes in the Framework of Deep Ordinal Classification
    Javier Barbero-Gómez
    Pedro Antonio Gutiérrez
    César Hervás-Martínez
    [J]. Neural Processing Letters, 2023, 55 : 5299 - 5330
  • [4] Error-Correcting Output Codes in the Framework of Deep Ordinal Classification
    Barbero-Gomez, Javier
    Gutierrez, Pedro Antonio
    Hervas-Martinez, Cesar
    [J]. ADVANCES IN COMPUTATIONAL INTELLIGENCE (IWANN 2021), PT II, 2021, 12862 : 3 - 13
  • [5] Cloud classification using error-correcting output codes
    Aha, DW
    Bankert, RL
    [J]. AI APPLICATIONS, 1997, 11 (01): : 13 - 28
  • [6] An overview of multi-classification based on error-correcting output codes
    [J]. Lei, Lei, 1794, Chinese Institute of Electronics (42):
  • [7] Quantum error-correcting output codes
    Windridge, David
    Mengoni, Riccardo
    Nagarajan, Rajagopal
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2018, 16 (08)
  • [8] Optimisation of multiclass supervised classification based on using output codes with error-correcting
    Ryazanov V.V.
    [J]. Pattern Recognition and Image Analysis, 2016, 26 (2) : 262 - 265
  • [9] Deep Error-Correcting Output Codes
    Wang, Li-Na
    Wei, Hongxu
    Zheng, Yuchen
    Dong, Junyu
    Zhong, Guoqiang
    [J]. ALGORITHMS, 2023, 16 (12)
  • [10] Hierarchical error-correcting output codes based on SVDD
    Lei Lei
    Wang Xiao-dan
    Luo Xi
    Song Ya-fei
    [J]. Pattern Analysis and Applications, 2016, 19 : 163 - 171