Error-Correcting Output Codes in the Framework of Deep Ordinal Classification

被引:0
|
作者
Barbero-Gomez, Javier [1 ]
Gutierrez, Pedro Antonio [1 ]
Hervas-Martinez, Cesar [1 ]
机构
[1] Univ Cordoba, Dept Informat & Anal Numer, Campus Rabanales, Cordoba 14014, Spain
关键词
Ordinal classification; Convolutional neural networks; Cumulative link model; Ordinal binary decomposition; CUMULATIVE LINK MODELS; NEURAL-NETWORK; MULTICLASS;
D O I
10.1007/s11063-022-10824-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic classification tasks on structured data have been revolutionized by Convolutional Neural Networks (CNNs), but the focus has been on binary and nominal classification tasks. Only recently, ordinal classification (where class labels present a natural ordering) has been tackled through the framework of CNNs. Also, ordinal classification datasets commonly present a high imbalance in the number of samples of each class, making it an even harder problem. Focus should be shifted from classic classification metrics towards per-class metrics (like AUC or Sensitivity) and rank agreement metrics (like Cohen's Kappa or Spearman's rank correlation coefficient). We present a new CNN architecture based on the Ordinal Binary Decomposition (OBD) technique using Error-Correcting Output Codes (ECOC). We aim to show experimentally, using four different CNN architectures and two ordinal classification datasets, that the OBD+ECOC methodology significantly improves the mean results on the relevant ordinal and class-balancing metrics. The proposed method is able to outperform a nominal approach as well as already existing ordinal approaches, achieving a mean performance of RMSE=1.0797\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{\textit{RMSE}}\,}}= 1.0797$$\end{document} for the Retinopathy dataset and RMSE=1.1237\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{\textit{RMSE}}\,}}= 1.1237$$\end{document} for the Adience dataset averaged over 4 different architectures.
引用
收藏
页码:5299 / 5330
页数:32
相关论文
共 50 条
  • [1] Error-Correcting Output Codes in the Framework of Deep Ordinal Classification
    Barbero-Gomez, Javier
    Antonio Gutierrez, Pedro
    Hervas-Martinez, Cesar
    [J]. NEURAL PROCESSING LETTERS, 2022,
  • [2] Error-Correcting Output Codes in the Framework of Deep Ordinal Classification
    Barbero-Gomez, Javier
    Gutierrez, Pedro Antonio
    Hervas-Martinez, Cesar
    [J]. ADVANCES IN COMPUTATIONAL INTELLIGENCE (IWANN 2021), PT II, 2021, 12862 : 3 - 13
  • [3] Error-Correcting Output Codes in the Framework of Deep Ordinal Classification
    Javier Barbero-Gómez
    Pedro Antonio Gutiérrez
    César Hervás-Martínez
    [J]. Neural Processing Letters, 2023, 55 : 5299 - 5330
  • [4] Deep Error-Correcting Output Codes
    Wang, Li-Na
    Wei, Hongxu
    Zheng, Yuchen
    Dong, Junyu
    Zhong, Guoqiang
    [J]. ALGORITHMS, 2023, 16 (12)
  • [5] Cloud classification using error-correcting output codes
    Aha, DW
    Bankert, RL
    [J]. AI APPLICATIONS, 1997, 11 (01): : 13 - 28
  • [6] Intelligent GPGPU Classification in Volume Visualization: A framework based on Error-Correcting Output Codes
    Escalera, S.
    Puig, A.
    Amoros, O.
    Salamo, M.
    [J]. COMPUTER GRAPHICS FORUM, 2011, 30 (07) : 2107 - 2115
  • [7] Quantum error-correcting output codes
    Windridge, David
    Mengoni, Riccardo
    Nagarajan, Rajagopal
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2018, 16 (08)
  • [8] Recoding Error-Correcting Output Codes
    Escalera, Sergio
    Pujol, Oriol
    Radeva, Petia
    [J]. MULTIPLE CLASSIFIER SYSTEMS, PROCEEDINGS, 2009, 5519 : 11 - +
  • [9] Efficient Decoding of Ternary Error-Correcting Output Codes for Multiclass Classification
    Park, Sang-Hyeun
    Fuernkranz, Johannes
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT II, 2009, 5782 : 189 - 204
  • [10] Mutual Information Measures for Subclass Error-Correcting Output Codes Classification
    Arvanitopoulos, Nikolaos
    Bouzas, Dimitrios
    Tefas, Anastasios
    [J]. ARTIFICIAL INTELLIGENCE: THEORIES, MODELS AND APPLICATIONS, PROCEEDINGS, 2010, 6040 : 19 - +