Robust Bayesian analysis of loss reserves data using the generalized-t distribution

被引:17
|
作者
Chan, Jennifer S. K. [1 ]
Choy, S. T. Boris [2 ]
Makov, Udi E. [3 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[2] Univ Technol Sydney, Dept Math Sci, Broadway, NSW 2007, Australia
[3] Univ Haifa, Dept Stat, IL-31905 Haifa, Israel
来源
ASTIN BULLETIN | 2008年 / 38卷 / 01期
关键词
Bayesian approach; state space model; threshold model; scale mixtures of uniform distribution; deviance information criterion;
D O I
10.2143/AST.38.1.2030411
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper presents a Bayesian approach using Markov chain Monte Carlo methods and the generalized-t (GT) distribution to predict loss reserves for the insurance companies. Existing models and methods cannot cope with irregular and extreme claims and hence do not offer an accurate prediction of loss reserves. To develop a more robust model for irregular claims, this paper extends the conventional normal error distribution to the GT distribution which nests several heavy-tailed distributions including the Student-t and exponential power distributions. It is shown that the GT distribution can be expressed as a scale mixture of uniforms (SMU) distribution which facilitates model implementation and detection of outliers by using mixing parameters. Different models for the mean function, including the log-ANOVA, log-ANCOVA, state space and threshold models, are adopted to analyze real loss reserves data. Finally, the best model is selected according to the deviance information criterion (DIC).
引用
收藏
页码:207 / 230
页数:24
相关论文
共 50 条
  • [1] Bayesian analysis of loss reserving using dynamic models with generalized beta distribution
    Dong, A. X. D.
    Chan, J. S. K.
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2013, 53 (02): : 355 - 365
  • [2] On the distribution of discounted loss reserves using generalized linear models.
    Hoedemakers, T
    Beirlant, J
    Goovaerts, MJ
    Dhaene, J
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2003, 33 (02): : 432 - 432
  • [3] Robust Bayesian analysis of loss reserving data using scale mixtures distributions
    Choy, S. T. Boris
    Chan, Jennifer S. K.
    Makov, Udi E.
    [J]. JOURNAL OF APPLIED STATISTICS, 2016, 43 (03) : 396 - 411
  • [4] PARTIALLY ADAPTIVE ESTIMATION OF REGRESSION-MODELS VIA THE GENERALIZED-T DISTRIBUTION
    MCDONALD, JB
    NEWEY, WK
    [J]. ECONOMETRIC THEORY, 1988, 4 (03) : 428 - 457
  • [5] Robust Bayesian Analysis of Lifetime Data from Maxwell Distribution
    Panwar, M. S.
    Tomer, Sanjeev K.
    [J]. AUSTRIAN JOURNAL OF STATISTICS, 2019, 48 (01) : 38 - 55
  • [6] Reference Bayesian analysis for the generalized lognormal distribution with application to survival data
    Tomazella, Vera L. D.
    de Jesus, Sandra R.
    Louzada, Francisco
    Nadarajah, Saralees
    Ramos, Pedro L.
    [J]. STATISTICS AND ITS INTERFACE, 2020, 13 (01) : 139 - 149
  • [7] Bayesian analysis of a generalized lognormal distribution
    Martin, J.
    Perez, C. J.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (04) : 1377 - 1387
  • [8] Generalized Dirichlet distribution in Bayesian analysis
    Wong, TT
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 1998, 97 (2-3) : 165 - 181
  • [9] Robust modeling using the generalized epsilon-skew-t distribution
    Venegas, Osvaldo
    Rodriguez, Francisco
    Gomez, Hector W.
    Olivares-Pacheco, Juan F.
    Bolfarine, Heleno
    [J]. JOURNAL OF APPLIED STATISTICS, 2012, 39 (12) : 2685 - 2698
  • [10] A Note on Bayesian Analysis of Decapitated Generalized Poisson Distribution under various Loss Functions
    Dey, Sanku
    Dey, Tanujit
    [J]. PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2011, 7 (02) : 157 - 168