Bayesian analysis of loss reserving using dynamic models with generalized beta distribution

被引:23
|
作者
Dong, A. X. D. [1 ]
Chan, J. S. K. [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
来源
INSURANCE MATHEMATICS & ECONOMICS | 2013年 / 53卷 / 02期
关键词
Generalized beta distribution; Bayesian analysis; State space model; Threshold model; Mixture distribution; Loss reserve;
D O I
10.1016/j.insmatheco.2013.07.001
中图分类号
F [经济];
学科分类号
02 ;
摘要
A Bayesian approach is presented in order to model long tail loss reserving data using the generalized beta distribution of the second kind (GB2) with dynamic mean functions and mixture model representation. The proposed GB2 distribution provides a flexible probability density function, which nests various distributions with light and heavy tails, to facilitate accurate loss reserving in insurance applications. Extending the mean functions to include the state space and threshold models provides a dynamic approach to allow for irregular claims behaviors and legislative change which may occur during the claims settlement period. The mixture of GB2 distributions is proposed as a mean of modeling the unobserved heterogeneity which arises from the incidence of very large claims in the loss reserving data. It is shown through both simulation study and forecasting that model parameters are estimated with high accuracy. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:355 / 365
页数:11
相关论文
共 50 条
  • [1] BAYESIAN ANALYSIS OF RESERVING MODELS AND APPLICATIONS
    Dong, X. D. A.
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2016, 94 (02) : 343 - 344
  • [2] Copula based Bayesian data analysis of loss reserving
    Shakoori, Afrooz
    Izadi, Muhyiddin
    Khaledi, Baha-Eldin
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (02) : 727 - 743
  • [3] Robust Bayesian analysis of loss reserving data using scale mixtures distributions
    Choy, S. T. Boris
    Chan, Jennifer S. K.
    Makov, Udi E.
    [J]. JOURNAL OF APPLIED STATISTICS, 2016, 43 (03) : 396 - 411
  • [4] Stochastic Demand Dynamic Traffic Models Using Generalized Beta-Gaussian Bayesian Networks
    Castillo, Enrique
    Nogal, Maria
    Maria Menendez, Jose
    Sanchez-Cambronero, Santos
    Jimenez, Pilar
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2012, 13 (02) : 565 - 581
  • [5] Dynamic Bayesian beta models
    da-Silva, C. Q.
    Migon, H. S.
    Correia, L. T.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (06) : 2074 - 2089
  • [6] Robust Bayesian analysis of loss reserves data using the generalized-t distribution
    Chan, Jennifer S. K.
    Choy, S. T. Boris
    Makov, Udi E.
    [J]. ASTIN BULLETIN, 2008, 38 (01): : 207 - 230
  • [7] Bayesian Monte Carlo method for monotonic models applying the Generalized Beta distribution
    Rajabalinejad, M.
    Demirbilek, Z.
    [J]. ENGINEERING FAILURE ANALYSIS, 2011, 18 (04) : 1153 - 1161
  • [8] CLAIM RESERVING WITH GENERALIZED LINEAR MIXED MODELS BY USING R SOFTWARE
    Boj del Val, Eva
    Esquinas Figueras, Judit
    [J]. ANALES DEL INSTITUTO DE ACTUARIOS ESPANOLES, 2016, (22): : 73 - 109
  • [9] Claim Reserving Using Distance-Based Generalized Linear Models
    Boj, Eva
    Costa, Teresa
    [J]. NONPARAMETRIC STATISTICS, 2016, 175 : 135 - 148
  • [10] On Bayesian analysis of generalized linear models using the Jacobian technique
    Das, Sourish
    Dey, Dipak K.
    [J]. AMERICAN STATISTICIAN, 2006, 60 (03): : 264 - 268