Profile empirical likelihood for parametric and semiparametric models

被引:5
|
作者
Lin, L [1 ]
Zhu, LX
Yuen, KC
机构
[1] Shandong Univ, Sch Math & Syst Sci, Jinan 250100, Shandong Prov, Peoples R China
[2] Hong Kong Baptist Univ, Dept Math, Hong Kong, Hong Kong, Peoples R China
[3] E China Normal Univ, Dept Stat, Shanghai 200062, Peoples R China
[4] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
关键词
profile likelihood; empirical likelihood; efficiency; parametric and semiparametric models;
D O I
10.1007/BF02509236
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper introduces a profile empirical likelihood and a profile conditionally empirical likelihood to estimate the parameter of interest in the presence of nuisance parameters respectively for the parametric and semiparametric models. It is proven that these methods propose some efficient estimators of parameters of interest in the sense of least-favorable efficiency. Particularly, for the decomposable semiparametric models, an explicit representation for the estimator of parameter of interest is derived from the proposed nonparametric method. These new estimations are different from and more efficient than the existing estimations. Some examples and simulation studies are given to illustrate the theoretical results.
引用
收藏
页码:485 / 505
页数:21
相关论文
共 50 条