Semiparametric estimation of the error distribution in multivariate regression using copulas

被引:6
|
作者
Kim, Gunky [1 ]
Silvapulle, Mervyn J. [1 ]
Silvapulle, Paramsothy [1 ]
机构
[1] Monash Univ, Dept Econ & Business Stat, Melbourne, Vic 3145, Australia
关键词
association; copula; dependence parameter; estimating equation; pseudolikelihood; value-at-risk;
D O I
10.1111/j.1467-842X.2007.00483.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A semiparametric method is developed to estimate the dependence parameter and the joint distribution of the error term in the multivariate linear regression model. The nonparametric part of the method treats the marginal distributions of the error term as unknown, and estimates them using suitable empirical distribution functions. Then the dependence parameter is estimated by either maximizing a pseudolikelihood or solving an estimating equation. It is shown that this estimator is asymptotically normal, and a consistent estimator of its large sample variance is given. A simulation study shows that the proposed semiparametric method is better than the parametric ones available when the error distribution is unknown, which is almost always the case in practice. It turns out that there is no loss of asymptotic efficiency as a result of the estimation of regression parameters. An empirical example on portfolio management is used to illustrate the method.
引用
收藏
页码:321 / 336
页数:16
相关论文
共 50 条
  • [41] Nonparametric estimation of multivariate multiparameter conditional copulas
    Lin, Jin-Guan
    Zhang, Kong-Sheng
    Zhao, Yan-Yong
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2017, 46 (01) : 126 - 136
  • [42] GeD spline estimation of multivariate Archimedean copulas
    Dimitrova, Dimitrina S.
    Kaishev, Vladimir K.
    Penev, Spiridon I.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (07) : 3570 - 3582
  • [43] Semiparametric regression estimation for longitudinal data in models with martingale difference error's structure
    Zhou, Xing-Cai
    Lin, Jin-Guan
    [J]. STATISTICS, 2013, 47 (03) : 521 - 534
  • [44] On the Construction of a Semiparametric Family of Bivariate Copulas Using the Opposite Diagonal Section of Copulas
    Susam, Selim Orhun
    Chesneau, Christophe
    [J]. JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2024, 18 (02)
  • [45] Pose estimation and tracking using multivariate regression
    Thayananthan, Arasanathan
    Navaratnam, Ramanan
    Stenger, Bjoern
    Torr, Philip H. S.
    Cipolla, Roberto
    [J]. PATTERN RECOGNITION LETTERS, 2008, 29 (09) : 1302 - 1310
  • [46] Semiparametric mixture regression with unspecified error distributions
    Ma, Yanyuan
    Wang, Shaoli
    Xu, Lin
    Yao, Weixin
    [J]. TEST, 2021, 30 (02) : 429 - 444
  • [47] Ridge estimation of a semiparametric regression model
    Hu, HC
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 176 (01) : 215 - 222
  • [48] Simultaneous Semiparametric Estimation of Clustering and Regression
    Marbac, Matthieu
    Sedki, Mohammed
    Biernacki, Christophe
    Vandewalle, Vincent
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2022, 31 (02) : 477 - 485
  • [49] Semiparametric estimation of count regression models
    Gurmu, S
    Rilstone, P
    Stern, S
    [J]. JOURNAL OF ECONOMETRICS, 1999, 88 (01) : 123 - 150
  • [50] Semiparametric estimation of count regression models
    Department of Economics, Georgia State University, University Plaza, Atlanta, GA 30303, United States
    不详
    不详
    [J]. J Econom, 1 (123-150):