Self-Attention Encoding and Pooling for Speaker Recognition

被引:35
|
作者
Safari, Pooyan [1 ]
India, Miquel [1 ]
Hernando, Javier [1 ]
机构
[1] Univ Politecn Cataluna, TALP Res Ctr, Barcelona, Spain
来源
关键词
Self-Attention Encoding; Self-Attention Pooling; Speaker Verification; Speaker Embedding;
D O I
10.21437/Interspeech.2020-1446
中图分类号
R36 [病理学]; R76 [耳鼻咽喉科学];
学科分类号
100104 ; 100213 ;
摘要
The computing power of mobile devices limits the end-user applications in terms of storage size, processing, memory and energy consumption. These limitations motivate researchers for the design of more efficient deep models. On the other hand, self-attention networks based on Transformer architecture have attracted remarkable interests due to their high parallelization capabilities and strong performance on a variety of Natural Language Processing (NLP) applications. Inspired by the Transformer, we propose a tandem Self-Attention Encoding and Pooling (SAEP) mechanism to obtain a discriminative speaker embedding given non-fixed length speech utterances. SAEP is a stack of identical blocks solely relied on self-attention and position-wise feed-forward networks to create vector representation of speakers. This approach encodes short-term speaker spectral features into speaker embeddings to be used in text-independent speaker verification. We have evaluated this approach on both VoxCeleb1 & 2 datasets. The proposed architecture is able to outperform the baseline x-vector, and shows competitive performance to some other benchmarks based on convolutions, with a significant reduction in model size. It employs 94%, 95%, and 73% less parameters compared to ResNet-34, ResNet-50, and x-vector, respectively. This indicates that the proposed fully attention based architecture is more efficient in extracting time-invariant features from speaker utterances.
引用
收藏
页码:941 / 945
页数:5
相关论文
共 50 条
  • [31] Point cloud upsampling network based on pyramid pooling and self-attention mechanism
    Yang, Xiaoping
    Chen, Fei
    Li, Zhenhua
    Liu, Guanghui
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2024, 2024 (01):
  • [32] Multi-Stride Self-Attention for Speech Recognition
    Han, Kyu J.
    Huang, Jing
    Tang, Yun
    He, Xiaodong
    Zhou, Bowen
    INTERSPEECH 2019, 2019, : 2788 - 2792
  • [33] SELF-ATTENTION GUIDED DEEP FEATURES FOR ACTION RECOGNITION
    Xiao, Renyi
    Hou, Yonghong
    Guo, Zihui
    Li, Chuankun
    Wang, Pichao
    Li, Wanqing
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 1060 - 1065
  • [34] Context Matters: Self-Attention for Sign Language Recognition
    Slimane, Fares Ben
    Bouguessa, Mohamed
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 7884 - 7891
  • [35] ESAformer: Enhanced Self-Attention for Automatic Speech Recognition
    Li, Junhua
    Duan, Zhikui
    Li, Shiren
    Yu, Xinmei
    Yang, Guangguang
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 471 - 475
  • [36] A lightweight transformer with linear self-attention for defect recognition
    Zhai, Yuwen
    Li, Xinyu
    Gao, Liang
    Gao, Yiping
    ELECTRONICS LETTERS, 2024, 60 (17)
  • [37] Residential load forecasting based on LSTM fusing self-attention mechanism with pooling
    Zang, Haixiang
    Xu, Ruiqi
    Cheng, Lilin
    Ding, Tao
    Liu, Ling
    Wei, Zhinong
    Sun, Guoqiang
    ENERGY, 2021, 229
  • [38] NEPALI SPEECH RECOGNITION USING SELF-ATTENTION NETWORKS
    Joshi, Basanta
    Shrestha, Rupesh
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2023, 19 (06): : 1769 - 1784
  • [39] Finger Vein Recognition Based on ResNet With Self-Attention
    Zhang, Zhibo
    Chen, Guanghua
    Zhang, Weifeng
    Wang, Huiyang
    IEEE ACCESS, 2024, 12 : 1943 - 1951
  • [40] Multimodal cooperative self-attention network for action recognition
    Zhong, Zhuokun
    Hou, Zhenjie
    Liang, Jiuzhen
    Lin, En
    Shi, Haiyong
    IET IMAGE PROCESSING, 2023, 17 (06) : 1775 - 1783