Universal quantum circuit for two-qubit transformations with three controlled-NOT gates

被引:173
|
作者
Vidal, G [1 ]
Dawson, CM
机构
[1] CALTECH, Inst Quantum Informat, Pasadena, CA 91125 USA
[2] Univ Queensland, Ctr Quantum Comp Technol, Brisbane, Qld 4072, Australia
[3] Univ Queensland, Dept Phys, Brisbane, Qld 4072, Australia
来源
PHYSICAL REVIEW A | 2004年 / 69卷 / 01期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevA.69.010301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider quantum circuits made of controlled-NOT (CNOT) gates and single-qubit unitary gates and look for constructions that minimize the Use Of CNOT gates. We show, by means of an explicit quantum circuit, that three CNOT gates are necessary and sufficient in order to implement an arbitrary unitary transformation of two qubits. We also identify the subset of two-qubit gates that can be performed with only two CNOT gates and provide a simple characterization for them.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Comment on "Universal quantum circuit for two-qubit transformations with three controlled-NOT gates" and "Recognizing small-circuit structure in two-qubit operators"
    Coffey, Mark W.
    Deiotte, Ron
    Semi, Torey
    [J]. PHYSICAL REVIEW A, 2008, 77 (06):
  • [2] Exact two-qubit universal quantum circuit
    Zhang, J
    Vala, J
    Sastry, S
    Whaley, KB
    [J]. PHYSICAL REVIEW LETTERS, 2003, 91 (02)
  • [3] Mirror symmetry in the geometry of nonlocal two-qubit gates and universal two-qubit quantum circuits
    Selvan, Karthick
    Balakrishnan, S.
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2023, 77 (07):
  • [4] Mirror symmetry in the geometry of nonlocal two-qubit gates and universal two-qubit quantum circuits
    Karthick Selvan
    S. Balakrishnan
    [J]. The European Physical Journal D, 2023, 77
  • [5] Phase-controlled two-qubit quantum gates
    Malinovsky, Vladimir S.
    Sola, Ignacio R.
    Vala, Jiri
    [J]. PHYSICAL REVIEW A, 2014, 89 (03):
  • [6] Quantum process tomography of two-qubit controlled-Z and controlled-NOT gates using superconducting phase qubits
    Yamamoto, T.
    Neeley, M.
    Lucero, E.
    Bialczak, R. C.
    Kelly, J.
    Lenander, M.
    Mariantoni, Matteo
    O'Connell, A. D.
    Sank, D.
    Wang, H.
    Weides, M.
    Wenner, J.
    Yin, Y.
    Cleland, A. N.
    Martinis, John M.
    [J]. PHYSICAL REVIEW B, 2010, 82 (18)
  • [7] Two-Qubit Quantum Gates to Reduce the Quantum Cost of Reversible Circuit
    Rahman, Md. Mazder
    Banerjee, Anindita
    Dueck, Gerhard W.
    Pathak, Anirban
    [J]. 2011 41ST IEEE INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL), 2011, : 86 - 92
  • [8] Deterministic controlled-NOT gate for single-photon two-qubit quantum logic
    Fiorentino, M
    Wong, FNC
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (07) : 070502 - 1
  • [9] Two-qubit and three-qubit controlled gates with cross-Kerr nonlinearity
    Zhao Rui-Tong
    Guo Qi
    Cheng Liu-Yong
    Sun Li-Li
    Wang Hong-Fu
    Zhang Shou
    [J]. CHINESE PHYSICS B, 2013, 22 (03)
  • [10] Two-qubit and three-qubit controlled gates with cross-Kerr nonlinearity
    赵瑞通
    郭奇
    程留永
    孙立莉
    王洪福
    张寿
    [J]. Chinese Physics B, 2013, 22 (03) : 177 - 182