Bias-reduced estimators for bivariate tail modelling

被引:13
|
作者
Beirlant, J. [3 ]
Dierckx, G. [3 ,4 ]
Guillou, A. [1 ,2 ]
机构
[1] Univ Strasbourg, F-67084 Strasbourg, France
[2] CNRS, IRMA UMR 7501, F-67084 Strasbourg, France
[3] Katholieke Univ Leuven, Dept Math, Leuven Stat Res Ctr, Louvain, Belgium
[4] Hogesch Univ Brussel, Dept Math & Stat, Brussels, Belgium
来源
INSURANCE MATHEMATICS & ECONOMICS | 2011年 / 49卷 / 01期
关键词
Extreme value theory; Bivariate slowly varying function; Bias reduction; DISTRIBUTIONS;
D O I
10.1016/j.insmatheco.2011.01.010
中图分类号
F [经济];
学科分类号
02 ;
摘要
Ledford and Tawn (1997) introduced a flexible bivariate tail model based on the coefficient of tail dependence and on the dependence of the extreme values of the random variables. In this paper, we extend the concept by specifying the slowly varying part of the model as done by Hall (1982) with the univariate case. Based on Beirlant et al. (2009), we propose a bias-reduced estimator for the coefficient of tail dependence and for the estimation of small tail probabilities. We discuss the properties of these estimators via simulations and a real-life example. Furthermore, we discuss some theoretical asymptotic aspects of this approach. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:18 / 26
页数:9
相关论文
共 50 条