A Lightweight Framework for Fast Image Retrieval on Large-Scale Image Datasets

被引:0
|
作者
Chen, Renhai [1 ]
Li, Wenwen [1 ]
Rao, Guozheng [1 ]
Feng, Zhiyong [1 ]
机构
[1] Tianjin Univ, Coll Intelligence & Comp, Shenzhen Res Inst, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
Image Retrieval; CB-tree; Data Clustering;
D O I
10.1109/nvmsa51238.2020.9188182
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Content-based image retrieval (CBIR) has attracted substantial attention over the past decade. Instead of taking textual keywords as input, CBIR techniques directly take a visual query and try to return its similar images from a given database. In this paper, we introduce a lightweight framework to fast locate the images on large-scale datasets. To achieve this, we first group the images with the high similarity into one cluster by using the deep neural network. Then, we extract the eigenvalues and eigenvectors from the images. Based on the eigenvalues and eigenvectors, we propose CB-tree (clustering binary tree) to fast locate the image clusters. Compared with the baseline schemes, the proposed framework can enhance the searching speed by up to 33%.
引用
收藏
页码:42 / 47
页数:6
相关论文
共 50 条
  • [41] An automatic image-text alignment method for large-scale web image retrieval
    Baopeng Zhang
    Yanyun Qu
    Jinye Peng
    Jianping Fan
    [J]. Multimedia Tools and Applications, 2017, 76 : 21401 - 21421
  • [42] Software Framework for Fast Image Retrieval
    Grycuk, Rafal
    Scherer, Rafal
    [J]. 2019 24TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2019, : 588 - 593
  • [43] Comparative Study on Dimensionality Reduction in Large-Scale Image Retrieval
    Cheng, Bo
    Zhuo, Li
    Zhang, Jing
    [J]. 2013 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2013, : 445 - 450
  • [44] Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
    Radenovic, Filip
    Iscen, Ahmet
    Tolias, Giorgos
    Avrithis, Yannis
    Chum, Ondrej
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 5706 - 5715
  • [45] Large-Scale Image Retrieval Based on Compressed Camera Identification
    Valsesia, Diego
    Coluccia, Giulio
    Bianchi, Tiziano
    Magli, Enrico
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2015, 17 (09) : 1439 - 1449
  • [46] COMPACT AND ROBUST FISHER DESCRIPTORS FOR LARGE-SCALE IMAGE RETRIEVAL
    Cai, Huiwen
    Wang, Xiaoyan
    Wang, Yangsheng
    [J]. 2011 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2011,
  • [47] ELSEIR: A Privacy-Preserving Large-Scale Image Retrieval Framework for Outsourced Data Sharing
    Tang, Zixin
    Fan, Haihui
    Gu, Xiaoyan
    Li, Yang
    Li, Bo
    Wang, Xin
    [J]. PROCEEDINGS OF THE 4TH ANNUAL ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2024, 2024, : 488 - 496
  • [48] Towards Optimal CNN Descriptors for Large-Scale Image Retrieval
    Gu, Yinzheng
    Li, Chuanpeng
    Jiang, Yu-Gang
    [J]. PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, : 1768 - 1776
  • [49] A Large-Scale Secure Image Retrieval Method in Cloud Environment
    Xu, Yanyan
    Zhao, Xiao
    Gong, Jiaying
    [J]. IEEE ACCESS, 2019, 7 : 160082 - 160090
  • [50] Large-scale retrieval for medical image analytics: A comprehensive review
    Li, Zhongyu
    Zhang, Xiaofan
    Mueller, Henning
    Zhang, Shaoting
    [J]. MEDICAL IMAGE ANALYSIS, 2018, 43 : 66 - 84