A Lightweight Framework for Fast Image Retrieval on Large-Scale Image Datasets

被引:0
|
作者
Chen, Renhai [1 ]
Li, Wenwen [1 ]
Rao, Guozheng [1 ]
Feng, Zhiyong [1 ]
机构
[1] Tianjin Univ, Coll Intelligence & Comp, Shenzhen Res Inst, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
Image Retrieval; CB-tree; Data Clustering;
D O I
10.1109/nvmsa51238.2020.9188182
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Content-based image retrieval (CBIR) has attracted substantial attention over the past decade. Instead of taking textual keywords as input, CBIR techniques directly take a visual query and try to return its similar images from a given database. In this paper, we introduce a lightweight framework to fast locate the images on large-scale datasets. To achieve this, we first group the images with the high similarity into one cluster by using the deep neural network. Then, we extract the eigenvalues and eigenvectors from the images. Based on the eigenvalues and eigenvectors, we propose CB-tree (clustering binary tree) to fast locate the image clusters. Compared with the baseline schemes, the proposed framework can enhance the searching speed by up to 33%.
引用
收藏
页码:42 / 47
页数:6
相关论文
共 50 条
  • [1] A Framework for the Revision of Large-Scale Image Retrieval Benchmarks
    Hassan, Muhammad Umair
    Shohag, Md Shakil Ahamed
    Niu, Dongmei
    Shaukat, Kamran
    Zhang, Mingxuan
    Zhao, Wenshuang
    Zhao, Xiuyang
    [J]. ELEVENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2019), 2019, 11179
  • [2] Simulation of fast retrieval method for large-scale image database
    Sai, Qiao
    [J]. MECHATRONICS ENGINEERING, COMPUTING AND INFORMATION TECHNOLOGY, 2014, 556-562 : 4959 - 4962
  • [3] Large-Scale Image Retrieval with Elasticsearch
    Amato, Giuseppe
    Bolettieri, Paolo
    Carrara, Fabio
    Falchi, Fabrizio
    Gennaro, Claudio
    [J]. ACM/SIGIR PROCEEDINGS 2018, 2018, : 925 - 928
  • [4] Fusing local image descriptors for large-scale image retrieval
    Hoerster, Eva
    Lienhart, Rainer
    [J]. 2007 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-8, 2007, : 3664 - +
  • [5] Similarity caching in large-scale image retrieval
    Falchi, Fabrizio
    Lucchese, Claudio
    Orlando, Salvatore
    Perego, Raffaele
    Rabitti, Fausto
    [J]. INFORMATION PROCESSING & MANAGEMENT, 2012, 48 (05) : 803 - 818
  • [6] Region Division for Large-scale Image Retrieval
    Rao, Yunbo
    Liu, Wei
    [J]. KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2019, 13 (10) : 5197 - 5218
  • [7] Weak Attributes for Large-Scale Image Retrieval
    Yu, Felix X.
    Ji, Rongrong
    Tsai, Ming-Hen
    Ye, Guangnan
    Chang, Shih-Fu
    [J]. 2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 2949 - 2956
  • [8] Manhattan Hashing for Large-Scale Image Retrieval
    Kong, Weihao
    Li, Wu-Jun
    Guo, Minyi
    [J]. SIGIR 2012: PROCEEDINGS OF THE 35TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2012, : 45 - 54
  • [9] Deep Hashing for Large-scale Image Retrieval
    Li Mengting
    Liu Jun
    [J]. PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 10940 - 10944
  • [10] Jointly sparse fast hashing with orthogonal learning for large-scale image retrieval
    Xu, Honghao
    Lai, Zhihui
    Kong, Heng
    [J]. SIGNAL PROCESSING-IMAGE COMMUNICATION, 2023, 119