Comment on "Deep Ensemble Machine Learning Framework for the Estimation of PM2.5 Concentrations"

被引:0
|
作者
Stafoggia, Massimo [1 ]
Cattani, Giorgio [2 ]
Ancona, Carla [1 ]
Gasparrini, Antonio [3 ]
Ranzi, Andrea [4 ]
机构
[1] Lazio Reg Hlth Serv ASL Roma 1, Dept Epidemiol, Via Cristoforo Colombo 112, I-00147 Rome, Italy
[2] Inst Environm Protect & Res, Rome, Italy
[3] London Sch Hyg & Trop Med, Dept Publ Hlth Environm & Soc, London, England
[4] Reg Agcy Environm Prevent Emilia Romagna, Etnvironm Hlth Reference Ctr, Modena, Italy
关键词
DAILY PM10;
D O I
10.1289/EHP11385
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
引用
收藏
页数:2
相关论文
共 50 条
  • [41] Estimation of background PM2.5 concentrations for an air-polluted environment
    Wang, Sheng-Hsiang
    Hung, Ruo-Ya
    Lin, Neng-Huei
    Gomez-Losada, Alvaro
    Pires, Jose C. M.
    Shimada, Kojiro
    Hatakeyama, Shiro
    Takami, Akinori
    [J]. ATMOSPHERIC RESEARCH, 2020, 231 (231)
  • [42] Estimation of ambient PM2.5 concentrations in Maryland and verification by measured values
    Walsh, K
    Sherwell, J
    [J]. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 2002, 52 (10) : 1161 - 1175
  • [43] Estimation of ambient PM2.5 concentrations in Maryland and verification by measured values
    Walsh, Kenneth
    Sherwell, John
    [J]. Journal of the Air and Waste Management Association, 2002, 52 (10): : 1161 - 1175
  • [44] Characterization of ambient PM2.5 concentrations
    Yu, Tai-Yi
    [J]. ATMOSPHERIC ENVIRONMENT, 2010, 44 (24) : 2902 - 2912
  • [45] A deep learning-based PM2.5 concentration estimator
    Sun, Kezheng
    Tang, Lijuan
    Qian, JianSheng
    Wang, Guangcheng
    Lou, Cairong
    [J]. DISPLAYS, 2021, 69
  • [46] The application of deep learning method in Shanghai PM2.5 prediction
    深度学习方法在上海市PM2.5浓度预报中的应用
    [J]. Cao, Yu (liushuicaoyu@163.com), 1600, Chinese Society for Environmental Sciences (40): : 530 - 538
  • [47] Prediction of PM2.5 concentration in Ulaanbaatar with deep learning models
    Suriya
    Natsagdorj, Narantsogt
    Aorigele
    Zhou, Haijun
    Sachurila
    [J]. URBAN CLIMATE, 2023, 47
  • [48] Comparative analysis of machine learning models for predicting PM2.5 concentrations using meteorological and chemical indicators
    Haseeb, Muhammad
    Tahir, Zainab
    Mahmood, Syed Amer
    Arif, Hania
    Almutairi, Khalid F.
    Soufan, Walid
    Tariq, Aqil
    [J]. JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2024, 263
  • [49] PM2.5 concentrations estimation using machine learning methods with combination of MAIAC - MODIS AOD product - a case study in western Iran
    Fathollahi, Loghman
    Wu, Falin
    Maleki, Reza
    Pongracic, Barbara
    [J]. AIR QUALITY ATMOSPHERE AND HEALTH, 2023, 16 (08): : 1529 - 1541
  • [50] Estimating daily high-resolution PM2.5 concentrations over Texas: Machine Learning approach
    Ghahremanloo, Masoud
    Choi, Yunsoo
    Sayeed, Alqamah
    Salman, Ahmed Khan
    Pan, Shuai
    Amani, Meisam
    [J]. ATMOSPHERIC ENVIRONMENT, 2021, 247